Abdul Wahab, Amjad Farooq, Faisal Faiz, Ali shan, Mehwish Tahir, Mashkoor Ahmad, Rokayya Sami, Jianghua Wu, Yasir Faiz
{"title":"创新的二氧化硫吸附剂:活性炭、多离子液体和壳聚糖的协同作用","authors":"Abdul Wahab, Amjad Farooq, Faisal Faiz, Ali shan, Mehwish Tahir, Mashkoor Ahmad, Rokayya Sami, Jianghua Wu, Yasir Faiz","doi":"10.1007/s10450-025-00605-8","DOIUrl":null,"url":null,"abstract":"<div><p>In response to the growing threat of pollution and its adverse effects on human health, a novel and innovative method for preparing SO₂ adsorbents has been developed. The present study introduces a unique approach that combines activated carbon (AC), chitosan (CS), and polyionic liquids (PILs) to create highly effective composite adsorbents. Incorporating 4%, 7%, and 10% by weight of butyl and octyl PILs into the composite beads led to a significant enhancement in SO₂ adsorption capabilities. The PILs were synthesized through direct polymerization and meticulously characterized using Fourier transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA), confirming their successful synthesis and high thermal stability. The activated carbon was effectively impregnated with the PILs, and the resulting composite beads were shaped into CS beads. Gas adsorption studies revealed that the AC-CS-PIL beads impregnated with butyl and octyl PILs nearly doubled the adsorption capacity compared to raw activated carbon. Notably, the 10% octyl AC-CS-PIL composite exhibited the highest breakthrough time of 37.08 min and an impressive adsorption capacity of 445 mg/g, which is 2.4 times greater than that of raw AC. These results highlight the promising potential of this innovative adsorbent in effectively combating pollution and improving air quality.</p></div>","PeriodicalId":458,"journal":{"name":"Adsorption","volume":"31 2","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Innovative adsorbent for sulphur dioxide: synergy of activated carbon, polyionic liquids, and chitosan\",\"authors\":\"Abdul Wahab, Amjad Farooq, Faisal Faiz, Ali shan, Mehwish Tahir, Mashkoor Ahmad, Rokayya Sami, Jianghua Wu, Yasir Faiz\",\"doi\":\"10.1007/s10450-025-00605-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In response to the growing threat of pollution and its adverse effects on human health, a novel and innovative method for preparing SO₂ adsorbents has been developed. The present study introduces a unique approach that combines activated carbon (AC), chitosan (CS), and polyionic liquids (PILs) to create highly effective composite adsorbents. Incorporating 4%, 7%, and 10% by weight of butyl and octyl PILs into the composite beads led to a significant enhancement in SO₂ adsorption capabilities. The PILs were synthesized through direct polymerization and meticulously characterized using Fourier transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA), confirming their successful synthesis and high thermal stability. The activated carbon was effectively impregnated with the PILs, and the resulting composite beads were shaped into CS beads. Gas adsorption studies revealed that the AC-CS-PIL beads impregnated with butyl and octyl PILs nearly doubled the adsorption capacity compared to raw activated carbon. Notably, the 10% octyl AC-CS-PIL composite exhibited the highest breakthrough time of 37.08 min and an impressive adsorption capacity of 445 mg/g, which is 2.4 times greater than that of raw AC. These results highlight the promising potential of this innovative adsorbent in effectively combating pollution and improving air quality.</p></div>\",\"PeriodicalId\":458,\"journal\":{\"name\":\"Adsorption\",\"volume\":\"31 2\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-02-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Adsorption\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10450-025-00605-8\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Adsorption","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10450-025-00605-8","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Innovative adsorbent for sulphur dioxide: synergy of activated carbon, polyionic liquids, and chitosan
In response to the growing threat of pollution and its adverse effects on human health, a novel and innovative method for preparing SO₂ adsorbents has been developed. The present study introduces a unique approach that combines activated carbon (AC), chitosan (CS), and polyionic liquids (PILs) to create highly effective composite adsorbents. Incorporating 4%, 7%, and 10% by weight of butyl and octyl PILs into the composite beads led to a significant enhancement in SO₂ adsorption capabilities. The PILs were synthesized through direct polymerization and meticulously characterized using Fourier transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA), confirming their successful synthesis and high thermal stability. The activated carbon was effectively impregnated with the PILs, and the resulting composite beads were shaped into CS beads. Gas adsorption studies revealed that the AC-CS-PIL beads impregnated with butyl and octyl PILs nearly doubled the adsorption capacity compared to raw activated carbon. Notably, the 10% octyl AC-CS-PIL composite exhibited the highest breakthrough time of 37.08 min and an impressive adsorption capacity of 445 mg/g, which is 2.4 times greater than that of raw AC. These results highlight the promising potential of this innovative adsorbent in effectively combating pollution and improving air quality.
期刊介绍:
The journal Adsorption provides authoritative information on adsorption and allied fields to scientists, engineers, and technologists throughout the world. The information takes the form of peer-reviewed articles, R&D notes, topical review papers, tutorial papers, book reviews, meeting announcements, and news.
Coverage includes fundamental and practical aspects of adsorption: mathematics, thermodynamics, chemistry, and physics, as well as processes, applications, models engineering, and equipment design.
Among the topics are Adsorbents: new materials, new synthesis techniques, characterization of structure and properties, and applications; Equilibria: novel theories or semi-empirical models, experimental data, and new measurement methods; Kinetics: new models, experimental data, and measurement methods. Processes: chemical, biochemical, environmental, and other applications, purification or bulk separation, fixed bed or moving bed systems, simulations, experiments, and design procedures.