催化热解木质素衍生多孔碳物性的机器学习预测

IF 9.2 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Green Chemistry Pub Date : 2025-01-15 DOI:10.1039/d4gc05515b
Zihao Xie , Yue Cao , Zhicheng Luo
{"title":"催化热解木质素衍生多孔碳物性的机器学习预测","authors":"Zihao Xie ,&nbsp;Yue Cao ,&nbsp;Zhicheng Luo","doi":"10.1039/d4gc05515b","DOIUrl":null,"url":null,"abstract":"<div><div>Lignin-derived porous carbon produced through catalytic pyrolysis is crucial for energy storage, adsorption, and catalysis. However, predicting specific surface area (SSA), total pore volume (TPV), and microporosity (MP) remains challenging due to the variability in lignin properties, chemical activators, and pyrolysis conditions, compounded by limited data availability. In this study, we applied a hybrid machine learning framework incorporating a pre-trained interpolation model and a final regressor to impute missing features, improving prediction accuracy and generalizability. This approach yielded high predictive accuracy with <em>R</em><sup>2</sup> values of 0.82 (SSA), 0.86 (TPV), and 0.81 (MP) on a dataset of 112 samples, encompassing variations across six chemical activators (KOH, ZnCl<sub>2</sub>, H<sub>3</sub>PO<sub>4</sub>, K<sub>2</sub>CO<sub>3</sub>, NaOH, and Na<sub>2</sub>CO<sub>3</sub>). Feature importance analysis highlighted the significant influence of KOH on SSA and TPV, and H<sub>3</sub>PO<sub>4</sub> on MP. This research provides a framework to precisely tailor the pore structure of lignin-derived porous carbon <em>via</em> catalytic pyrolysis, enabling advancements in applications across diverse fields.</div></div>","PeriodicalId":78,"journal":{"name":"Green Chemistry","volume":"27 7","pages":"Pages 2046-2055"},"PeriodicalIF":9.2000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/gc/d4gc05515b?page=search","citationCount":"0","resultStr":"{\"title\":\"Machine learning prediction of physical properties of lignin derived porous carbon via catalytic pyrolysis†\",\"authors\":\"Zihao Xie ,&nbsp;Yue Cao ,&nbsp;Zhicheng Luo\",\"doi\":\"10.1039/d4gc05515b\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Lignin-derived porous carbon produced through catalytic pyrolysis is crucial for energy storage, adsorption, and catalysis. However, predicting specific surface area (SSA), total pore volume (TPV), and microporosity (MP) remains challenging due to the variability in lignin properties, chemical activators, and pyrolysis conditions, compounded by limited data availability. In this study, we applied a hybrid machine learning framework incorporating a pre-trained interpolation model and a final regressor to impute missing features, improving prediction accuracy and generalizability. This approach yielded high predictive accuracy with <em>R</em><sup>2</sup> values of 0.82 (SSA), 0.86 (TPV), and 0.81 (MP) on a dataset of 112 samples, encompassing variations across six chemical activators (KOH, ZnCl<sub>2</sub>, H<sub>3</sub>PO<sub>4</sub>, K<sub>2</sub>CO<sub>3</sub>, NaOH, and Na<sub>2</sub>CO<sub>3</sub>). Feature importance analysis highlighted the significant influence of KOH on SSA and TPV, and H<sub>3</sub>PO<sub>4</sub> on MP. This research provides a framework to precisely tailor the pore structure of lignin-derived porous carbon <em>via</em> catalytic pyrolysis, enabling advancements in applications across diverse fields.</div></div>\",\"PeriodicalId\":78,\"journal\":{\"name\":\"Green Chemistry\",\"volume\":\"27 7\",\"pages\":\"Pages 2046-2055\"},\"PeriodicalIF\":9.2000,\"publicationDate\":\"2025-01-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2025/gc/d4gc05515b?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Green Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/org/science/article/pii/S1463926225000457\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Green Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S1463926225000457","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

通过催化热解产生的木质素衍生多孔碳对于能量储存、吸附和催化至关重要。然而,由于木质素性质、化学活化剂和热解条件的可变性以及有限的数据可用性,预测比表面积(SSA)、总孔隙体积(TPV)和微孔隙度(MP)仍然具有挑战性。在这项研究中,我们应用了一个混合机器学习框架,该框架结合了一个预训练的插值模型和一个最终回归器来估算缺失的特征,提高了预测的准确性和泛化性。该方法在112个样品的数据集上获得了很高的预测精度,R2值为0.82 (SSA), 0.86 (TPV)和0.81 (MP),包括六种化学活化剂(KOH, ZnCl2, H3PO4, K2CO3, NaOH和Na2CO3)的变化。特征重要性分析表明,KOH对SSA和TPV有显著影响,H3PO4对MP有显著影响。该研究为通过催化热解精确定制木质素衍生多孔碳的孔隙结构提供了一个框架,使其在不同领域的应用取得了进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Machine learning prediction of physical properties of lignin derived porous carbon via catalytic pyrolysis†

Machine learning prediction of physical properties of lignin derived porous carbon via catalytic pyrolysis†
Lignin-derived porous carbon produced through catalytic pyrolysis is crucial for energy storage, adsorption, and catalysis. However, predicting specific surface area (SSA), total pore volume (TPV), and microporosity (MP) remains challenging due to the variability in lignin properties, chemical activators, and pyrolysis conditions, compounded by limited data availability. In this study, we applied a hybrid machine learning framework incorporating a pre-trained interpolation model and a final regressor to impute missing features, improving prediction accuracy and generalizability. This approach yielded high predictive accuracy with R2 values of 0.82 (SSA), 0.86 (TPV), and 0.81 (MP) on a dataset of 112 samples, encompassing variations across six chemical activators (KOH, ZnCl2, H3PO4, K2CO3, NaOH, and Na2CO3). Feature importance analysis highlighted the significant influence of KOH on SSA and TPV, and H3PO4 on MP. This research provides a framework to precisely tailor the pore structure of lignin-derived porous carbon via catalytic pyrolysis, enabling advancements in applications across diverse fields.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Green Chemistry
Green Chemistry 化学-化学综合
CiteScore
16.10
自引率
7.10%
发文量
677
审稿时长
1.4 months
期刊介绍: Green Chemistry is a journal that provides a unique forum for the publication of innovative research on the development of alternative green and sustainable technologies. The scope of Green Chemistry is based on the definition proposed by Anastas and Warner (Green Chemistry: Theory and Practice, P T Anastas and J C Warner, Oxford University Press, Oxford, 1998), which defines green chemistry as the utilisation of a set of principles that reduces or eliminates the use or generation of hazardous substances in the design, manufacture and application of chemical products. Green Chemistry aims to reduce the environmental impact of the chemical enterprise by developing a technology base that is inherently non-toxic to living things and the environment. The journal welcomes submissions on all aspects of research relating to this endeavor and publishes original and significant cutting-edge research that is likely to be of wide general appeal. For a work to be published, it must present a significant advance in green chemistry, including a comparison with existing methods and a demonstration of advantages over those methods.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信