探索数据驱动业务模型的支持因素:混合方法方法

IF 13.3 1区 管理学 Q1 BUSINESS
Reza Dabestani , Sam Solaimani , Gazar Ajroemjan , Kitty Koelemeijer
{"title":"探索数据驱动业务模型的支持因素:混合方法方法","authors":"Reza Dabestani ,&nbsp;Sam Solaimani ,&nbsp;Gazar Ajroemjan ,&nbsp;Kitty Koelemeijer","doi":"10.1016/j.techfore.2025.124036","DOIUrl":null,"url":null,"abstract":"<div><div>One of the critical objectives underlying the digital transformation initiatives of numerous enterprises is the introduction of novel data-driven business models (DDBMs) aimed at facilitating the creation, delivery, and capture of value. While DDBMs has gained immense traction among scholars and practitioners, the implementation and scaling leave much to be desired. One widely argued reason is our poor understanding of the factors that enable DDBM's effective implementation. Using a mixed-methods approach, this study identifies a comprehensive set of enablers, explores the enablers' interdependencies, and discusses how the empirical findings are of value in DDBMs' implementation from theoretical and practical viewpoints.</div></div>","PeriodicalId":48454,"journal":{"name":"Technological Forecasting and Social Change","volume":"213 ","pages":"Article 124036"},"PeriodicalIF":13.3000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring the enablers of data-driven business models: A mixed-methods approach\",\"authors\":\"Reza Dabestani ,&nbsp;Sam Solaimani ,&nbsp;Gazar Ajroemjan ,&nbsp;Kitty Koelemeijer\",\"doi\":\"10.1016/j.techfore.2025.124036\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>One of the critical objectives underlying the digital transformation initiatives of numerous enterprises is the introduction of novel data-driven business models (DDBMs) aimed at facilitating the creation, delivery, and capture of value. While DDBMs has gained immense traction among scholars and practitioners, the implementation and scaling leave much to be desired. One widely argued reason is our poor understanding of the factors that enable DDBM's effective implementation. Using a mixed-methods approach, this study identifies a comprehensive set of enablers, explores the enablers' interdependencies, and discusses how the empirical findings are of value in DDBMs' implementation from theoretical and practical viewpoints.</div></div>\",\"PeriodicalId\":48454,\"journal\":{\"name\":\"Technological Forecasting and Social Change\",\"volume\":\"213 \",\"pages\":\"Article 124036\"},\"PeriodicalIF\":13.3000,\"publicationDate\":\"2025-02-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Technological Forecasting and Social Change\",\"FirstCategoryId\":\"91\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0040162525000678\",\"RegionNum\":1,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BUSINESS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Technological Forecasting and Social Change","FirstCategoryId":"91","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0040162525000678","RegionNum":1,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BUSINESS","Score":null,"Total":0}
引用次数: 0

摘要

众多企业数字化转型计划的关键目标之一是引入新的数据驱动业务模型(dbms),旨在促进价值的创建、交付和获取。虽然dbms在学者和实践者中获得了巨大的吸引力,但其实现和可扩展性仍有很多需要改进的地方。一个被广泛争论的原因是我们对使DDBM有效实现的因素理解不足。使用混合方法,本研究确定了一组全面的促成因素,探索了促成因素之间的相互依赖关系,并从理论和实践的角度讨论了经验发现如何在数据库管理系统的实现中具有价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exploring the enablers of data-driven business models: A mixed-methods approach
One of the critical objectives underlying the digital transformation initiatives of numerous enterprises is the introduction of novel data-driven business models (DDBMs) aimed at facilitating the creation, delivery, and capture of value. While DDBMs has gained immense traction among scholars and practitioners, the implementation and scaling leave much to be desired. One widely argued reason is our poor understanding of the factors that enable DDBM's effective implementation. Using a mixed-methods approach, this study identifies a comprehensive set of enablers, explores the enablers' interdependencies, and discusses how the empirical findings are of value in DDBMs' implementation from theoretical and practical viewpoints.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
21.30
自引率
10.80%
发文量
813
期刊介绍: Technological Forecasting and Social Change is a prominent platform for individuals engaged in the methodology and application of technological forecasting and future studies as planning tools, exploring the interconnectedness of social, environmental, and technological factors. In addition to serving as a key forum for these discussions, we offer numerous benefits for authors, including complimentary PDFs, a generous copyright policy, exclusive discounts on Elsevier publications, and more.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信