Ir(III)复合物在光动力癌症治疗中增强光细胞毒性的微观结构调控

IF 3.9 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Xiaomeng Liu , Qing Zhang , Jiaqi Li , Zhewen Deng , Senqiang Zhu , Bo Ma , Rui Liu , Hongjun Zhu
{"title":"Ir(III)复合物在光动力癌症治疗中增强光细胞毒性的微观结构调控","authors":"Xiaomeng Liu ,&nbsp;Qing Zhang ,&nbsp;Jiaqi Li ,&nbsp;Zhewen Deng ,&nbsp;Senqiang Zhu ,&nbsp;Bo Ma ,&nbsp;Rui Liu ,&nbsp;Hongjun Zhu","doi":"10.1016/j.jphotobiol.2025.113122","DOIUrl":null,"url":null,"abstract":"<div><div>Malignant tumors continue to be the most common and remain one of the leading causes of death with increasing incidence, mortality, and burden. Traditional chemotherapeutic agents often encounter significant side effects and demonstrate lackluster efficacy. Photodynamic therapy (PDT) is widely recognized as a microtrauma therapeutic method for tumor treatment technique. Ir(III) complexes are a potential photosensitizer (PS) type due to their excellent photophysical properties. <strong>Ir-1</strong> and <strong>Ir-2,</strong> which are two novel Ir(III) complexes were synthesized and characterized using spectroscopic and electrochemical techniques, the key structural difference lies in the position of a benzene in the C^N ligand. This slight change makes <strong>Ir-2</strong> have a better intersystem crossing (ISC) ability and thus has more excellent triplet excited state properties. So <strong>Ir-2</strong> shows high singlet oxygen (<sup>1</sup>O<sub>2</sub>) production and photocytotoxicity with half maximal inhibitory concentration (IC<sub>50</sub>) of 40 nM, effectively inhibiting and eliminating tumors in mice while demonstrating good biosafety. This study highlights the importance of precise molecular design in developing highly efficient PSs for PDT.</div></div>","PeriodicalId":16772,"journal":{"name":"Journal of photochemistry and photobiology. B, Biology","volume":"264 ","pages":"Article 113122"},"PeriodicalIF":3.9000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microstructural regulation of Ir(III) complexes for enhanced photocytotoxicity in photodynamic cancer therapy\",\"authors\":\"Xiaomeng Liu ,&nbsp;Qing Zhang ,&nbsp;Jiaqi Li ,&nbsp;Zhewen Deng ,&nbsp;Senqiang Zhu ,&nbsp;Bo Ma ,&nbsp;Rui Liu ,&nbsp;Hongjun Zhu\",\"doi\":\"10.1016/j.jphotobiol.2025.113122\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Malignant tumors continue to be the most common and remain one of the leading causes of death with increasing incidence, mortality, and burden. Traditional chemotherapeutic agents often encounter significant side effects and demonstrate lackluster efficacy. Photodynamic therapy (PDT) is widely recognized as a microtrauma therapeutic method for tumor treatment technique. Ir(III) complexes are a potential photosensitizer (PS) type due to their excellent photophysical properties. <strong>Ir-1</strong> and <strong>Ir-2,</strong> which are two novel Ir(III) complexes were synthesized and characterized using spectroscopic and electrochemical techniques, the key structural difference lies in the position of a benzene in the C^N ligand. This slight change makes <strong>Ir-2</strong> have a better intersystem crossing (ISC) ability and thus has more excellent triplet excited state properties. So <strong>Ir-2</strong> shows high singlet oxygen (<sup>1</sup>O<sub>2</sub>) production and photocytotoxicity with half maximal inhibitory concentration (IC<sub>50</sub>) of 40 nM, effectively inhibiting and eliminating tumors in mice while demonstrating good biosafety. This study highlights the importance of precise molecular design in developing highly efficient PSs for PDT.</div></div>\",\"PeriodicalId\":16772,\"journal\":{\"name\":\"Journal of photochemistry and photobiology. B, Biology\",\"volume\":\"264 \",\"pages\":\"Article 113122\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-02-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of photochemistry and photobiology. B, Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1011134425000259\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of photochemistry and photobiology. B, Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1011134425000259","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

恶性肿瘤仍然是最常见的,并且仍然是导致死亡的主要原因之一,其发病率、死亡率和负担都在增加。传统的化疗药物副作用大,疗效不佳。光动力疗法(PDT)是目前公认的肿瘤治疗技术中的一种微创伤治疗方法。Ir(III)配合物具有良好的光物理性质,是一种潜在的光敏剂(PS)类型。本文合成了两种新型Ir(III)配合物Ir-1和Ir-2,并利用光谱和电化学技术对其进行了表征,其主要结构差异在于C^N配体中一个苯的位置。这一微小的变化使Ir-2具有更好的系统间交叉能力,从而具有更优异的三重态激发态性质。因此Ir-2具有较高的单线态氧(1O2)生成量和光细胞毒性,最大抑制浓度(IC50)为40 nM的一半,在具有良好生物安全性的同时,能有效抑制和消除小鼠肿瘤。这项研究强调了精确的分子设计对于开发高效的PDT PSs的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Microstructural regulation of Ir(III) complexes for enhanced photocytotoxicity in photodynamic cancer therapy

Microstructural regulation of Ir(III) complexes for enhanced photocytotoxicity in photodynamic cancer therapy
Malignant tumors continue to be the most common and remain one of the leading causes of death with increasing incidence, mortality, and burden. Traditional chemotherapeutic agents often encounter significant side effects and demonstrate lackluster efficacy. Photodynamic therapy (PDT) is widely recognized as a microtrauma therapeutic method for tumor treatment technique. Ir(III) complexes are a potential photosensitizer (PS) type due to their excellent photophysical properties. Ir-1 and Ir-2, which are two novel Ir(III) complexes were synthesized and characterized using spectroscopic and electrochemical techniques, the key structural difference lies in the position of a benzene in the C^N ligand. This slight change makes Ir-2 have a better intersystem crossing (ISC) ability and thus has more excellent triplet excited state properties. So Ir-2 shows high singlet oxygen (1O2) production and photocytotoxicity with half maximal inhibitory concentration (IC50) of 40 nM, effectively inhibiting and eliminating tumors in mice while demonstrating good biosafety. This study highlights the importance of precise molecular design in developing highly efficient PSs for PDT.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
12.10
自引率
1.90%
发文量
161
审稿时长
37 days
期刊介绍: The Journal of Photochemistry and Photobiology B: Biology provides a forum for the publication of papers relating to the various aspects of photobiology, as well as a means for communication in this multidisciplinary field. The scope includes: - Bioluminescence - Chronobiology - DNA repair - Environmental photobiology - Nanotechnology in photobiology - Photocarcinogenesis - Photochemistry of biomolecules - Photodynamic therapy - Photomedicine - Photomorphogenesis - Photomovement - Photoreception - Photosensitization - Photosynthesis - Phototechnology - Spectroscopy of biological systems - UV and visible radiation effects and vision.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信