温度变化下Mg2Si基隧道场效应管的性能和可靠性研究

IF 2.7 Q2 PHYSICS, CONDENSED MATTER
Bandi Venkata Chandan, Kaushal Kumar Nigam, Adil Tanveer
{"title":"温度变化下Mg2Si基隧道场效应管的性能和可靠性研究","authors":"Bandi Venkata Chandan,&nbsp;Kaushal Kumar Nigam,&nbsp;Adil Tanveer","doi":"10.1016/j.micrna.2025.208084","DOIUrl":null,"url":null,"abstract":"<div><div>Fabrication complexity, low ON-current, and reliability challenges are significant concerns for Tunnel FETs in the semiconductor industry. This study addresses these issues by conducting systematic numerical simulations to introduce a novel N<span><math><msup><mrow></mrow><mrow><mo>+</mo></mrow></msup></math></span>-based Magnesium Silicide tunneling interface (Mg<sub>2</sub>Si-N<span><math><msup><mrow></mrow><mrow><mo>+</mo></mrow></msup></math></span>-TFET). Utilizing Mg<sub>2</sub>Si in the source region enhances key figures of merit (FOMs), such as ON-current, V<span><math><msub><mrow></mrow><mrow><mi>T</mi><mi>H</mi></mrow></msub></math></span>, SS, and the switching ratio, due to its low bandgap, which reduces the tunneling barrier. To optimize the device for low-power and high-speed applications, it is essential to assess its reliability under various constraints. Consequently, this study evaluates the Mg<sub>2</sub>Si-N<span><math><msup><mrow></mrow><mrow><mo>+</mo></mrow></msup></math></span>-TFET thermal performance over a temperature range of 250 K to 450 K and exhibits less sensitivity, making it a promising candidate for low-power switching and biosensing applications, even at elevated temperatures.</div></div>","PeriodicalId":100923,"journal":{"name":"Micro and Nanostructures","volume":"200 ","pages":"Article 208084"},"PeriodicalIF":2.7000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Performance and Reliability Investigation of Mg2Si based Tunnel FET under Temperature Variations for High-Sensitivity Applications\",\"authors\":\"Bandi Venkata Chandan,&nbsp;Kaushal Kumar Nigam,&nbsp;Adil Tanveer\",\"doi\":\"10.1016/j.micrna.2025.208084\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Fabrication complexity, low ON-current, and reliability challenges are significant concerns for Tunnel FETs in the semiconductor industry. This study addresses these issues by conducting systematic numerical simulations to introduce a novel N<span><math><msup><mrow></mrow><mrow><mo>+</mo></mrow></msup></math></span>-based Magnesium Silicide tunneling interface (Mg<sub>2</sub>Si-N<span><math><msup><mrow></mrow><mrow><mo>+</mo></mrow></msup></math></span>-TFET). Utilizing Mg<sub>2</sub>Si in the source region enhances key figures of merit (FOMs), such as ON-current, V<span><math><msub><mrow></mrow><mrow><mi>T</mi><mi>H</mi></mrow></msub></math></span>, SS, and the switching ratio, due to its low bandgap, which reduces the tunneling barrier. To optimize the device for low-power and high-speed applications, it is essential to assess its reliability under various constraints. Consequently, this study evaluates the Mg<sub>2</sub>Si-N<span><math><msup><mrow></mrow><mrow><mo>+</mo></mrow></msup></math></span>-TFET thermal performance over a temperature range of 250 K to 450 K and exhibits less sensitivity, making it a promising candidate for low-power switching and biosensing applications, even at elevated temperatures.</div></div>\",\"PeriodicalId\":100923,\"journal\":{\"name\":\"Micro and Nanostructures\",\"volume\":\"200 \",\"pages\":\"Article 208084\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-02-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Micro and Nanostructures\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2773012325000135\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micro and Nanostructures","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773012325000135","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

摘要

制造复杂性、低导通电流和可靠性挑战是半导体工业中隧道场效应管的重要问题。本研究通过系统的数值模拟,引入了一种新型的N+基硅化镁隧道界面(Mg2Si-N+-TFET),解决了这些问题。在源区使用Mg2Si可以提高关键性能指标(FOMs),如导通电流、VTH、SS和开关比,由于其低带隙,从而减少了隧道势垒。为了优化器件的低功耗和高速应用,必须评估其在各种约束下的可靠性。因此,本研究评估了Mg2Si-N+-TFET在250 K至450 K温度范围内的热性能,并且表现出较低的灵敏度,使其成为低功耗开关和生物传感应用的有希望的候选材料,即使在高温下也是如此。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Performance and Reliability Investigation of Mg2Si based Tunnel FET under Temperature Variations for High-Sensitivity Applications
Fabrication complexity, low ON-current, and reliability challenges are significant concerns for Tunnel FETs in the semiconductor industry. This study addresses these issues by conducting systematic numerical simulations to introduce a novel N+-based Magnesium Silicide tunneling interface (Mg2Si-N+-TFET). Utilizing Mg2Si in the source region enhances key figures of merit (FOMs), such as ON-current, VTH, SS, and the switching ratio, due to its low bandgap, which reduces the tunneling barrier. To optimize the device for low-power and high-speed applications, it is essential to assess its reliability under various constraints. Consequently, this study evaluates the Mg2Si-N+-TFET thermal performance over a temperature range of 250 K to 450 K and exhibits less sensitivity, making it a promising candidate for low-power switching and biosensing applications, even at elevated temperatures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信