Yichun Yuan, Sophia Beilharz, Heather R. Everson, Nehal Nupnar, Mithun Kumar Debnath, Daniele Vinella, Juan Manuel Urueña, Faruk H. Örge, Michael J. A. Hore, Divita Mathur and Metin Karayilan*,
{"title":"可注射荧光瓶刷聚合物介入程序和生物医学成像","authors":"Yichun Yuan, Sophia Beilharz, Heather R. Everson, Nehal Nupnar, Mithun Kumar Debnath, Daniele Vinella, Juan Manuel Urueña, Faruk H. Örge, Michael J. A. Hore, Divita Mathur and Metin Karayilan*, ","doi":"10.1021/acs.biomac.4c0155010.1021/acs.biomac.4c01550","DOIUrl":null,"url":null,"abstract":"<p >Injectable biomaterials play a vital role in modern medicine, offering tailored functionalities for diverse therapeutic and diagnostic applications. In ophthalmology, for instance, viscoelastic materials are crucial for procedures such as cataract surgery but often leave residues, increasing postoperative risks. This study introduces injectable fluorescent viscoelastics (FluoVs) synthesized via one-step controlled radical copolymerization of oligo(ethylene glycol) acrylate and fluorescein acrylate. These bottlebrush-shaped polymers exhibit enhanced fluorescence intensity for improved traceability and facile removal postsurgery. To prevent aggregation, charged terpolymers were synthesized, ensuring intra- and intermolecular electrostatic repulsion. Dynamic light scattering and energy-conserved dissipative particle dynamics simulations revealed how the fluorescein content and monomer sequence affect the hydrodynamic size of these copolymers. Biocompatibility assessments showed that FluoVs maintained cell viability comparable to commercial hydroxypropyl methylcellulose and nonfluorescent poly(oligo(ethylene glycol) acrylate) controls. The FluoVs combine high fluorescence intensity, low viscosity, and excellent biocompatibility, offering intraoperative traceability and significant advancements for ocular and bioimaging applications.</p>","PeriodicalId":30,"journal":{"name":"Biomacromolecules","volume":"26 2","pages":"1234–1250 1234–1250"},"PeriodicalIF":5.4000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Injectable Fluorescent Bottlebrush Polymers for Interventional Procedures and Biomedical Imaging\",\"authors\":\"Yichun Yuan, Sophia Beilharz, Heather R. Everson, Nehal Nupnar, Mithun Kumar Debnath, Daniele Vinella, Juan Manuel Urueña, Faruk H. Örge, Michael J. A. Hore, Divita Mathur and Metin Karayilan*, \",\"doi\":\"10.1021/acs.biomac.4c0155010.1021/acs.biomac.4c01550\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Injectable biomaterials play a vital role in modern medicine, offering tailored functionalities for diverse therapeutic and diagnostic applications. In ophthalmology, for instance, viscoelastic materials are crucial for procedures such as cataract surgery but often leave residues, increasing postoperative risks. This study introduces injectable fluorescent viscoelastics (FluoVs) synthesized via one-step controlled radical copolymerization of oligo(ethylene glycol) acrylate and fluorescein acrylate. These bottlebrush-shaped polymers exhibit enhanced fluorescence intensity for improved traceability and facile removal postsurgery. To prevent aggregation, charged terpolymers were synthesized, ensuring intra- and intermolecular electrostatic repulsion. Dynamic light scattering and energy-conserved dissipative particle dynamics simulations revealed how the fluorescein content and monomer sequence affect the hydrodynamic size of these copolymers. Biocompatibility assessments showed that FluoVs maintained cell viability comparable to commercial hydroxypropyl methylcellulose and nonfluorescent poly(oligo(ethylene glycol) acrylate) controls. The FluoVs combine high fluorescence intensity, low viscosity, and excellent biocompatibility, offering intraoperative traceability and significant advancements for ocular and bioimaging applications.</p>\",\"PeriodicalId\":30,\"journal\":{\"name\":\"Biomacromolecules\",\"volume\":\"26 2\",\"pages\":\"1234–1250 1234–1250\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2025-01-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomacromolecules\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.biomac.4c01550\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomacromolecules","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.biomac.4c01550","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Injectable Fluorescent Bottlebrush Polymers for Interventional Procedures and Biomedical Imaging
Injectable biomaterials play a vital role in modern medicine, offering tailored functionalities for diverse therapeutic and diagnostic applications. In ophthalmology, for instance, viscoelastic materials are crucial for procedures such as cataract surgery but often leave residues, increasing postoperative risks. This study introduces injectable fluorescent viscoelastics (FluoVs) synthesized via one-step controlled radical copolymerization of oligo(ethylene glycol) acrylate and fluorescein acrylate. These bottlebrush-shaped polymers exhibit enhanced fluorescence intensity for improved traceability and facile removal postsurgery. To prevent aggregation, charged terpolymers were synthesized, ensuring intra- and intermolecular electrostatic repulsion. Dynamic light scattering and energy-conserved dissipative particle dynamics simulations revealed how the fluorescein content and monomer sequence affect the hydrodynamic size of these copolymers. Biocompatibility assessments showed that FluoVs maintained cell viability comparable to commercial hydroxypropyl methylcellulose and nonfluorescent poly(oligo(ethylene glycol) acrylate) controls. The FluoVs combine high fluorescence intensity, low viscosity, and excellent biocompatibility, offering intraoperative traceability and significant advancements for ocular and bioimaging applications.
期刊介绍:
Biomacromolecules is a leading forum for the dissemination of cutting-edge research at the interface of polymer science and biology. Submissions to Biomacromolecules should contain strong elements of innovation in terms of macromolecular design, synthesis and characterization, or in the application of polymer materials to biology and medicine.
Topics covered by Biomacromolecules include, but are not exclusively limited to: sustainable polymers, polymers based on natural and renewable resources, degradable polymers, polymer conjugates, polymeric drugs, polymers in biocatalysis, biomacromolecular assembly, biomimetic polymers, polymer-biomineral hybrids, biomimetic-polymer processing, polymer recycling, bioactive polymer surfaces, original polymer design for biomedical applications such as immunotherapy, drug delivery, gene delivery, antimicrobial applications, diagnostic imaging and biosensing, polymers in tissue engineering and regenerative medicine, polymeric scaffolds and hydrogels for cell culture and delivery.