IF 9.9 1区 工程技术 Q1 ENERGY & FUELS
Veli Bakırcıoğlu , Hossein B. Jond , Fatih Yilmaz
{"title":"Multi-Objective optimization and thermodynamic analysis of a supercritical CO2 Brayton cycle in a solar-powered multigeneration plant for net-zero emission goals","authors":"Veli Bakırcıoğlu ,&nbsp;Hossein B. Jond ,&nbsp;Fatih Yilmaz","doi":"10.1016/j.enconman.2025.119628","DOIUrl":null,"url":null,"abstract":"<div><div>The development, design, examination, and optimization of carbon-free power generation models are essential to achieve a sustainable future with net-zero emissions. This study introduces a novel multigeneration system, uniquely combining a supercritical CO<sub>2</sub> Brayton cycle and a transcritical CO<sub>2</sub> Rankine cycle, supported by a solar parabolic trough collector. The system integrates a reverse osmosis desalination unit, enabling simultaneous production of clean water, heating, and power. A multi-objective optimization framework is implemented by the NSGA-II algorithm, coupled with the TOPSIS method, to explore and identify optimal operational conditions. The innovation lies in the comprehensive consideration of solar incident angles and their impact on system performance, a rarely addressed aspect in the literature. Detailed thermodynamic analysis highlights system performance, achieving a net power capacity of 1052 kW, freshwater generation of 90.44 m3/h, and hot water generation of 1614 kW. The optimized results demonstrate significant improvements in overall energy (50.28 %) and exergy efficiency (22.31 %), showcasing the system’s potential as a benchmark for sustainable, zero-emission energy solutions.</div></div>","PeriodicalId":11664,"journal":{"name":"Energy Conversion and Management","volume":"328 ","pages":"Article 119628"},"PeriodicalIF":9.9000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Conversion and Management","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0196890425001517","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

无碳发电模式的开发、设计、检验和优化对于实现净零排放的可持续未来至关重要。本研究介绍了一种新型多发电系统,它独特地将超临界二氧化碳布雷顿循环和跨临界二氧化碳朗肯循环结合在一起,并由太阳能抛物槽集热器提供支持。该系统集成了一个反渗透海水淡化装置,可同时生产清洁水、供热和发电。通过 NSGA-II 算法和 TOPSIS 方法实现了多目标优化框架,以探索和确定最佳运行条件。创新之处在于全面考虑了太阳入射角及其对系统性能的影响,这在文献中很少涉及。详细的热力学分析凸显了系统性能,实现了 1052 千瓦的净发电量、90.44 立方米/小时的淡水发电量和 1614 千瓦的热水发电量。优化结果表明,总体能效(50.28%)和放能效率(22.31%)均有显著提高,展示了该系统作为可持续零排放能源解决方案基准的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Multi-Objective optimization and thermodynamic analysis of a supercritical CO2 Brayton cycle in a solar-powered multigeneration plant for net-zero emission goals

Multi-Objective optimization and thermodynamic analysis of a supercritical CO2 Brayton cycle in a solar-powered multigeneration plant for net-zero emission goals
The development, design, examination, and optimization of carbon-free power generation models are essential to achieve a sustainable future with net-zero emissions. This study introduces a novel multigeneration system, uniquely combining a supercritical CO2 Brayton cycle and a transcritical CO2 Rankine cycle, supported by a solar parabolic trough collector. The system integrates a reverse osmosis desalination unit, enabling simultaneous production of clean water, heating, and power. A multi-objective optimization framework is implemented by the NSGA-II algorithm, coupled with the TOPSIS method, to explore and identify optimal operational conditions. The innovation lies in the comprehensive consideration of solar incident angles and their impact on system performance, a rarely addressed aspect in the literature. Detailed thermodynamic analysis highlights system performance, achieving a net power capacity of 1052 kW, freshwater generation of 90.44 m3/h, and hot water generation of 1614 kW. The optimized results demonstrate significant improvements in overall energy (50.28 %) and exergy efficiency (22.31 %), showcasing the system’s potential as a benchmark for sustainable, zero-emission energy solutions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Energy Conversion and Management
Energy Conversion and Management 工程技术-力学
CiteScore
19.00
自引率
11.50%
发文量
1304
审稿时长
17 days
期刊介绍: The journal Energy Conversion and Management provides a forum for publishing original contributions and comprehensive technical review articles of interdisciplinary and original research on all important energy topics. The topics considered include energy generation, utilization, conversion, storage, transmission, conservation, management and sustainability. These topics typically involve various types of energy such as mechanical, thermal, nuclear, chemical, electromagnetic, magnetic and electric. These energy types cover all known energy resources, including renewable resources (e.g., solar, bio, hydro, wind, geothermal and ocean energy), fossil fuels and nuclear resources.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信