协同Zn和MoS2定制Co-N/C环境,实现先进Li-O2电池的双功能ORR/OER电催化

IF 16.9 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Zhiyang Wang, Qi Zhang, Wenhong Liu, Hao Luo, Xianghua Kong, Qingchun Yang, Dawei Zhang, Yan Yu
{"title":"协同Zn和MoS2定制Co-N/C环境,实现先进Li-O2电池的双功能ORR/OER电催化","authors":"Zhiyang Wang,&nbsp;Qi Zhang,&nbsp;Wenhong Liu,&nbsp;Hao Luo,&nbsp;Xianghua Kong,&nbsp;Qingchun Yang,&nbsp;Dawei Zhang,&nbsp;Yan Yu","doi":"10.1002/anie.202425502","DOIUrl":null,"url":null,"abstract":"<p>To better adapt lithium-oxygen batteries (LOBs) and overcome their sluggish oxygen reduction and evolution reactions (ORR/OER) kinetics, designing efficient bifunctional ORR/OER catalytic materials is essential. In this study, we successfully constructed a bifunctional ZnCo−N/C@MoS<sub>2</sub> catalyst by tailoring the Co−N/C center with Zn incorporation and MoS<sub>2</sub> encapsulation. Surprisingly, Zn atoms, which are typically considered to promote the Co atoms isolation, exhibit a promoting effect on the ORR performance of Co−N/C centers and enhance their stability under harsh conditions. Introducing MoS<sub>2</sub> establishes Mo−N coupling centers, enhancing electron transfer and adjusting the charge density of Co active centers, thereby compensating OER activity limitation of ZnCo−N/C. In Li−O<sub>2</sub> batteries, Zn and MoS<sub>2</sub> synergistically optimize intermediate interactions and regulate LiO<sub>2</sub> formation/decomposition, while Zn′s environmental adaptability and MoS<sub>2</sub>′s encapsulating protection jointly enhance operational stability. Results show that ZnCo−N/C@MoS<sub>2</sub>, serving as the oxygen electrode in Li−O<sub>2</sub> batteries, achieves a low overpotential of 1.01 V, an ultra-high specific capacity of 25,026 mAh g<sup>−1</sup>, and a long cycle life of 298 cycles. This work achieves bifunctionality in single-atom catalysts through precise dual modulation of the catalytic environment, providing a novel strategy for the development of lithium-oxygen batteries.</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"64 16","pages":""},"PeriodicalIF":16.9000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synergistic Zn and MoS2 Tailored Co−N/C Environments Enabling Bifunctional ORR/OER Electrocatalysis for Advanced Li−O2 Batteries\",\"authors\":\"Zhiyang Wang,&nbsp;Qi Zhang,&nbsp;Wenhong Liu,&nbsp;Hao Luo,&nbsp;Xianghua Kong,&nbsp;Qingchun Yang,&nbsp;Dawei Zhang,&nbsp;Yan Yu\",\"doi\":\"10.1002/anie.202425502\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>To better adapt lithium-oxygen batteries (LOBs) and overcome their sluggish oxygen reduction and evolution reactions (ORR/OER) kinetics, designing efficient bifunctional ORR/OER catalytic materials is essential. In this study, we successfully constructed a bifunctional ZnCo−N/C@MoS<sub>2</sub> catalyst by tailoring the Co−N/C center with Zn incorporation and MoS<sub>2</sub> encapsulation. Surprisingly, Zn atoms, which are typically considered to promote the Co atoms isolation, exhibit a promoting effect on the ORR performance of Co−N/C centers and enhance their stability under harsh conditions. Introducing MoS<sub>2</sub> establishes Mo−N coupling centers, enhancing electron transfer and adjusting the charge density of Co active centers, thereby compensating OER activity limitation of ZnCo−N/C. In Li−O<sub>2</sub> batteries, Zn and MoS<sub>2</sub> synergistically optimize intermediate interactions and regulate LiO<sub>2</sub> formation/decomposition, while Zn′s environmental adaptability and MoS<sub>2</sub>′s encapsulating protection jointly enhance operational stability. Results show that ZnCo−N/C@MoS<sub>2</sub>, serving as the oxygen electrode in Li−O<sub>2</sub> batteries, achieves a low overpotential of 1.01 V, an ultra-high specific capacity of 25,026 mAh g<sup>−1</sup>, and a long cycle life of 298 cycles. This work achieves bifunctionality in single-atom catalysts through precise dual modulation of the catalytic environment, providing a novel strategy for the development of lithium-oxygen batteries.</p>\",\"PeriodicalId\":125,\"journal\":{\"name\":\"Angewandte Chemie International Edition\",\"volume\":\"64 16\",\"pages\":\"\"},\"PeriodicalIF\":16.9000,\"publicationDate\":\"2025-02-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Angewandte Chemie International Edition\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/anie.202425502\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anie.202425502","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

为了更好地适应锂氧电池(lob)并克服其缓慢的氧还原演化反应(ORR/OER)动力学,设计高效的双功能ORR/OER催化材料至关重要。在这项研究中,我们成功地构建了双功能的ZnCo-N/C@MoS2催化剂,通过将Co-N/C中心与Zn结合并包裹MoS2。令人惊讶的是,通常被认为促进Co原子隔离的Zn原子对Co- n /C中心的ORR性能表现出促进作用,并增强了它们在恶劣条件下的稳定性。MoS2的引入建立了Mo-N耦合中心,增强了Co活性中心的电子转移,调节了Co活性中心的电荷密度,从而补偿了zn - Co- n /C的OER活性限制。在Li-O2电池中,Zn和MoS2协同优化中间相互作用,调控LiO2的形成/分解,Zn的环境适应性和MoS2的封装保护共同增强了运行稳定性。结果表明:ZnCo-N/C@MoS2作为Li-O2电池的氧电极,其过电位低至1.01 V,比容量高达25,026 mAh g-1,循环寿命长达298次。本研究通过对催化环境进行精确的双重调节,实现了单原子催化剂的双功能,为锂氧电池的发展提供了一种新的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Synergistic Zn and MoS2 Tailored Co−N/C Environments Enabling Bifunctional ORR/OER Electrocatalysis for Advanced Li−O2 Batteries

Synergistic Zn and MoS2 Tailored Co−N/C Environments Enabling Bifunctional ORR/OER Electrocatalysis for Advanced Li−O2 Batteries

To better adapt lithium-oxygen batteries (LOBs) and overcome their sluggish oxygen reduction and evolution reactions (ORR/OER) kinetics, designing efficient bifunctional ORR/OER catalytic materials is essential. In this study, we successfully constructed a bifunctional ZnCo−N/C@MoS2 catalyst by tailoring the Co−N/C center with Zn incorporation and MoS2 encapsulation. Surprisingly, Zn atoms, which are typically considered to promote the Co atoms isolation, exhibit a promoting effect on the ORR performance of Co−N/C centers and enhance their stability under harsh conditions. Introducing MoS2 establishes Mo−N coupling centers, enhancing electron transfer and adjusting the charge density of Co active centers, thereby compensating OER activity limitation of ZnCo−N/C. In Li−O2 batteries, Zn and MoS2 synergistically optimize intermediate interactions and regulate LiO2 formation/decomposition, while Zn′s environmental adaptability and MoS2′s encapsulating protection jointly enhance operational stability. Results show that ZnCo−N/C@MoS2, serving as the oxygen electrode in Li−O2 batteries, achieves a low overpotential of 1.01 V, an ultra-high specific capacity of 25,026 mAh g−1, and a long cycle life of 298 cycles. This work achieves bifunctionality in single-atom catalysts through precise dual modulation of the catalytic environment, providing a novel strategy for the development of lithium-oxygen batteries.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信