{"title":"基于强化学习的窄水域无人水面航行器轨迹跟踪优化控制。","authors":"Ziping Wei, Jialu Du","doi":"10.1016/j.isatra.2025.01.045","DOIUrl":null,"url":null,"abstract":"<div><div>For unmanned surface vehicles (USVs) navigating in narrow water areas in the presence of unknown dynamics and ocean environmental disturbances, this paper develops a reinforcement learning (RL)-based optimal control scheme for the trajectory tracking of USVs under motion state constraints. A nonlinear map is introduced to transform constrained motion state errors into bounded transformed errors, and then the motion state-constrained trajectory tracking problem of USVs is equivalently transformed into a boundedness problem of the transformed errors. Furthermore, an actor-critic framework is developed by utilizing adaptive neural networks (NNs). Within the actor-critic framework, a novel weight update law is designed for the critic NN by combining the gradient descent approach and the concurrent learning technology, thereby relaxing the persistent excitation condition required for adaptive critic NN weight updates. Subsequently, a disturbance compensator is designed and combined with the actor-critic framework to learn the trajectory tracking optimal control law for USVs in the presence of unknown dynamics and disturbances. Finally, theoretical analyses prove that the developed control scheme guarantees the boundedness of all signals in the USV closed-loop trajectory tracking control system, and simulation results show that the developed control scheme can make USVs track the desired trajectory in narrow water areas while reducing the energy consumption by approximately 14.6 % compared with an existing controller.</div></div>","PeriodicalId":14660,"journal":{"name":"ISA transactions","volume":"159 ","pages":"Pages 152-164"},"PeriodicalIF":6.5000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reinforcement learning-based trajectory tracking optimal control of unmanned surface vehicles in narrow water areas\",\"authors\":\"Ziping Wei, Jialu Du\",\"doi\":\"10.1016/j.isatra.2025.01.045\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>For unmanned surface vehicles (USVs) navigating in narrow water areas in the presence of unknown dynamics and ocean environmental disturbances, this paper develops a reinforcement learning (RL)-based optimal control scheme for the trajectory tracking of USVs under motion state constraints. A nonlinear map is introduced to transform constrained motion state errors into bounded transformed errors, and then the motion state-constrained trajectory tracking problem of USVs is equivalently transformed into a boundedness problem of the transformed errors. Furthermore, an actor-critic framework is developed by utilizing adaptive neural networks (NNs). Within the actor-critic framework, a novel weight update law is designed for the critic NN by combining the gradient descent approach and the concurrent learning technology, thereby relaxing the persistent excitation condition required for adaptive critic NN weight updates. Subsequently, a disturbance compensator is designed and combined with the actor-critic framework to learn the trajectory tracking optimal control law for USVs in the presence of unknown dynamics and disturbances. Finally, theoretical analyses prove that the developed control scheme guarantees the boundedness of all signals in the USV closed-loop trajectory tracking control system, and simulation results show that the developed control scheme can make USVs track the desired trajectory in narrow water areas while reducing the energy consumption by approximately 14.6 % compared with an existing controller.</div></div>\",\"PeriodicalId\":14660,\"journal\":{\"name\":\"ISA transactions\",\"volume\":\"159 \",\"pages\":\"Pages 152-164\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ISA transactions\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0019057825000710\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISA transactions","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0019057825000710","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Reinforcement learning-based trajectory tracking optimal control of unmanned surface vehicles in narrow water areas
For unmanned surface vehicles (USVs) navigating in narrow water areas in the presence of unknown dynamics and ocean environmental disturbances, this paper develops a reinforcement learning (RL)-based optimal control scheme for the trajectory tracking of USVs under motion state constraints. A nonlinear map is introduced to transform constrained motion state errors into bounded transformed errors, and then the motion state-constrained trajectory tracking problem of USVs is equivalently transformed into a boundedness problem of the transformed errors. Furthermore, an actor-critic framework is developed by utilizing adaptive neural networks (NNs). Within the actor-critic framework, a novel weight update law is designed for the critic NN by combining the gradient descent approach and the concurrent learning technology, thereby relaxing the persistent excitation condition required for adaptive critic NN weight updates. Subsequently, a disturbance compensator is designed and combined with the actor-critic framework to learn the trajectory tracking optimal control law for USVs in the presence of unknown dynamics and disturbances. Finally, theoretical analyses prove that the developed control scheme guarantees the boundedness of all signals in the USV closed-loop trajectory tracking control system, and simulation results show that the developed control scheme can make USVs track the desired trajectory in narrow water areas while reducing the energy consumption by approximately 14.6 % compared with an existing controller.
期刊介绍:
ISA Transactions serves as a platform for showcasing advancements in measurement and automation, catering to both industrial practitioners and applied researchers. It covers a wide array of topics within measurement, including sensors, signal processing, data analysis, and fault detection, supported by techniques such as artificial intelligence and communication systems. Automation topics encompass control strategies, modelling, system reliability, and maintenance, alongside optimization and human-machine interaction. The journal targets research and development professionals in control systems, process instrumentation, and automation from academia and industry.