Zhilong Zhang, Jiyang Zhang, Jiangang Chen, Jing Luo, Bingbing Lei
{"title":"高寒地区多年冻土路基边坡开挖过程稳定性研究。","authors":"Zhilong Zhang, Jiyang Zhang, Jiangang Chen, Jing Luo, Bingbing Lei","doi":"10.1038/s41598-025-85651-6","DOIUrl":null,"url":null,"abstract":"<p><p>The high-altitude mountainous half-excavated and half-filled embankment slopes primarily focus on the long-term stability of slopes, while the safety evaluation methods for the excavation process have received comparatively less attention. In practical engineering applications, the stability assessment of frozen soil slopes is predominantly based on thawing parameters. However, this approach often overlooks the impact of construction activities on water redistribution-particularly concerning the migration and accumulation of water at the frost-thaw interface-resulting in a less accurate evaluation of slope stability.In this study, we employ the strength reduction method, utilizing the strength reduction coefficient as a safety factor for slope stability assessment. A model for evaluating construction stability in slopes has been established. The findings indicate that lower water content correlates with reduced shear strength at the frost-thaw interface; moreover, both cohesion and internal friction angle of soil samples diminish progressively with increasing water content. Under identical temporal conditions, slopes with gentler gradients exhibit relatively shallower thawing depths and demonstrate enhanced stability.When comparing slopes with equivalent ratios and initial water contents, it was observed that maximum thawing depth in frozen soils decreases over time as construction delays occur; thus, later construction leads to diminished impacts on slope stability alongside accelerated freezing rates. Following excavation activities, safety coefficients initially decline before subsequently rising over time; higher safety coefficients correspond to extended safe construction durations for retaining walls.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"4612"},"PeriodicalIF":3.9000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11806092/pdf/","citationCount":"0","resultStr":"{\"title\":\"Study on the stability of excavation process of permafrost subgrade slope in Alpine region.\",\"authors\":\"Zhilong Zhang, Jiyang Zhang, Jiangang Chen, Jing Luo, Bingbing Lei\",\"doi\":\"10.1038/s41598-025-85651-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The high-altitude mountainous half-excavated and half-filled embankment slopes primarily focus on the long-term stability of slopes, while the safety evaluation methods for the excavation process have received comparatively less attention. In practical engineering applications, the stability assessment of frozen soil slopes is predominantly based on thawing parameters. However, this approach often overlooks the impact of construction activities on water redistribution-particularly concerning the migration and accumulation of water at the frost-thaw interface-resulting in a less accurate evaluation of slope stability.In this study, we employ the strength reduction method, utilizing the strength reduction coefficient as a safety factor for slope stability assessment. A model for evaluating construction stability in slopes has been established. The findings indicate that lower water content correlates with reduced shear strength at the frost-thaw interface; moreover, both cohesion and internal friction angle of soil samples diminish progressively with increasing water content. Under identical temporal conditions, slopes with gentler gradients exhibit relatively shallower thawing depths and demonstrate enhanced stability.When comparing slopes with equivalent ratios and initial water contents, it was observed that maximum thawing depth in frozen soils decreases over time as construction delays occur; thus, later construction leads to diminished impacts on slope stability alongside accelerated freezing rates. Following excavation activities, safety coefficients initially decline before subsequently rising over time; higher safety coefficients correspond to extended safe construction durations for retaining walls.</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":\"15 1\",\"pages\":\"4612\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-02-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11806092/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-025-85651-6\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-85651-6","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Study on the stability of excavation process of permafrost subgrade slope in Alpine region.
The high-altitude mountainous half-excavated and half-filled embankment slopes primarily focus on the long-term stability of slopes, while the safety evaluation methods for the excavation process have received comparatively less attention. In practical engineering applications, the stability assessment of frozen soil slopes is predominantly based on thawing parameters. However, this approach often overlooks the impact of construction activities on water redistribution-particularly concerning the migration and accumulation of water at the frost-thaw interface-resulting in a less accurate evaluation of slope stability.In this study, we employ the strength reduction method, utilizing the strength reduction coefficient as a safety factor for slope stability assessment. A model for evaluating construction stability in slopes has been established. The findings indicate that lower water content correlates with reduced shear strength at the frost-thaw interface; moreover, both cohesion and internal friction angle of soil samples diminish progressively with increasing water content. Under identical temporal conditions, slopes with gentler gradients exhibit relatively shallower thawing depths and demonstrate enhanced stability.When comparing slopes with equivalent ratios and initial water contents, it was observed that maximum thawing depth in frozen soils decreases over time as construction delays occur; thus, later construction leads to diminished impacts on slope stability alongside accelerated freezing rates. Following excavation activities, safety coefficients initially decline before subsequently rising over time; higher safety coefficients correspond to extended safe construction durations for retaining walls.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.