Babak Kamali Doust Azad, Amirhossein Roozbahani, Seyed Mohammad Tabatabaei, Amirali Valinejad, Alireza Fazelian, Kimia Shahmoradi, Fatemeh Khatami, Seyed Mohammad Kazem Aghamir, Mohammadreza Kolahdouz
{"title":"喷墨印刷电子快速和低成本原型的数字微流体装置使用现成的打印机。","authors":"Babak Kamali Doust Azad, Amirhossein Roozbahani, Seyed Mohammad Tabatabaei, Amirali Valinejad, Alireza Fazelian, Kimia Shahmoradi, Fatemeh Khatami, Seyed Mohammad Kazem Aghamir, Mohammadreza Kolahdouz","doi":"10.1038/s41598-025-89343-z","DOIUrl":null,"url":null,"abstract":"<p><p>Digital microfluidics (DMF) is revolutionizing point-of-care diagnostics by advancing lab-on-a-chip technology. To accelerate translation to real-life applications, it is crucial to devise rapid and low-cost methods for prototyping to test various design ideas. Here, we present one such method using an unmodified desktop inkjet printer and inexpensive materials. Inkjet-printing eliminates the need for costly printed circuit board technology or microfabrication facilities, significantly lowering the barriers to entry for researchers in the field of DMF technology. Here, an inkjet printer is characterized to print conductive tracks of Ag-ink on polyethylene terephthalate (PET) and glass slide substrates, delivering a maximum surface conductance of 7.69 Ω<sup>-1</sup>/cm<sup>2</sup>. Functional DMF chips are fabricated using tape, parafilm, and SU8 as dielectric and silicone oil as the hydrophobic layers, enabling actuation voltages as low as 144 VDC and 92 VAC@100 kHz for a whole-blood droplet. We detail our actuation and control circuitry, designed entirely with standard electronic modules and components. To showcase our approach, we fabricated a DMF micromixer and assessed its performance using image processing, proving the quality of the mixing. Leveraging affordable inkjet printing, our approach paves the way for highly accessible research and development in DMF-based point-of-care diagnostics.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"4578"},"PeriodicalIF":3.9000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11806089/pdf/","citationCount":"0","resultStr":"{\"title\":\"Inkjet-printed electronics for rapid and low-cost prototyping of digital microfluidic devices using an off-the-shelf printer.\",\"authors\":\"Babak Kamali Doust Azad, Amirhossein Roozbahani, Seyed Mohammad Tabatabaei, Amirali Valinejad, Alireza Fazelian, Kimia Shahmoradi, Fatemeh Khatami, Seyed Mohammad Kazem Aghamir, Mohammadreza Kolahdouz\",\"doi\":\"10.1038/s41598-025-89343-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Digital microfluidics (DMF) is revolutionizing point-of-care diagnostics by advancing lab-on-a-chip technology. To accelerate translation to real-life applications, it is crucial to devise rapid and low-cost methods for prototyping to test various design ideas. Here, we present one such method using an unmodified desktop inkjet printer and inexpensive materials. Inkjet-printing eliminates the need for costly printed circuit board technology or microfabrication facilities, significantly lowering the barriers to entry for researchers in the field of DMF technology. Here, an inkjet printer is characterized to print conductive tracks of Ag-ink on polyethylene terephthalate (PET) and glass slide substrates, delivering a maximum surface conductance of 7.69 Ω<sup>-1</sup>/cm<sup>2</sup>. Functional DMF chips are fabricated using tape, parafilm, and SU8 as dielectric and silicone oil as the hydrophobic layers, enabling actuation voltages as low as 144 VDC and 92 VAC@100 kHz for a whole-blood droplet. We detail our actuation and control circuitry, designed entirely with standard electronic modules and components. To showcase our approach, we fabricated a DMF micromixer and assessed its performance using image processing, proving the quality of the mixing. Leveraging affordable inkjet printing, our approach paves the way for highly accessible research and development in DMF-based point-of-care diagnostics.</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":\"15 1\",\"pages\":\"4578\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-02-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11806089/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-025-89343-z\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-89343-z","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Inkjet-printed electronics for rapid and low-cost prototyping of digital microfluidic devices using an off-the-shelf printer.
Digital microfluidics (DMF) is revolutionizing point-of-care diagnostics by advancing lab-on-a-chip technology. To accelerate translation to real-life applications, it is crucial to devise rapid and low-cost methods for prototyping to test various design ideas. Here, we present one such method using an unmodified desktop inkjet printer and inexpensive materials. Inkjet-printing eliminates the need for costly printed circuit board technology or microfabrication facilities, significantly lowering the barriers to entry for researchers in the field of DMF technology. Here, an inkjet printer is characterized to print conductive tracks of Ag-ink on polyethylene terephthalate (PET) and glass slide substrates, delivering a maximum surface conductance of 7.69 Ω-1/cm2. Functional DMF chips are fabricated using tape, parafilm, and SU8 as dielectric and silicone oil as the hydrophobic layers, enabling actuation voltages as low as 144 VDC and 92 VAC@100 kHz for a whole-blood droplet. We detail our actuation and control circuitry, designed entirely with standard electronic modules and components. To showcase our approach, we fabricated a DMF micromixer and assessed its performance using image processing, proving the quality of the mixing. Leveraging affordable inkjet printing, our approach paves the way for highly accessible research and development in DMF-based point-of-care diagnostics.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.