Khaled Aliqab, Dhruvik Agravat, Shobhit K Patel, Ammar Armghan, Naim Ben Ali, Meshari Alsharari
{"title":"利用机器学习分析石墨烯涂层在各种金属/氧化物晶体/复合材料衬底上的增强太阳能热能转换。","authors":"Khaled Aliqab, Dhruvik Agravat, Shobhit K Patel, Ammar Armghan, Naim Ben Ali, Meshari Alsharari","doi":"10.1038/s41598-024-83486-1","DOIUrl":null,"url":null,"abstract":"<p><p>Because energy interest demands clean and sustainability in the last ten years. Solar thermal energy conversion, where sunlight can be absorbed to convert it into heat can stand as an alternative for this purpose. Graphene dispersed with different substrates enables us to get torsion control over light absorption and heat transport. This work discusses the optothermal properties of graphene-based coatings on different substrates such as CuO, MAPBI3, Fe, etc. The optothermal properties of such CuO-graphene, MAPBI3-graphene, and Fe-graphene combinations display the highest average absorptance of 96.8% across the solar spectrum between 0.2 and 2.5 μm followed by 86.7% by MAPBI3-graphene. However, Fe-graphene depicts a significantly lower value of 24.3%. A critical inspection of these optothermal properties would enrich one with critical knowledge of design optimisation in graphene-coated solar absorbers. Thus, the data collection time is greatly reduced using ML compared to running simulations which have a step size of about 8 h per change. Where the machine learning efficacy is 98% for the thickness optimization of Fe, CuO, and MAPBI3 with 25% test data. Of much potential interest are the solar absorbers developed using these materials in fields such as solar thermal energy harvesting, air/water heaters, and industrial heating systems.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"4599"},"PeriodicalIF":3.9000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11805908/pdf/","citationCount":"0","resultStr":"{\"title\":\"Analysis of graphene coatings on various metallic/oxide crystal/composite material substrates using machine learning for enhanced solar thermal energy conversion.\",\"authors\":\"Khaled Aliqab, Dhruvik Agravat, Shobhit K Patel, Ammar Armghan, Naim Ben Ali, Meshari Alsharari\",\"doi\":\"10.1038/s41598-024-83486-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Because energy interest demands clean and sustainability in the last ten years. Solar thermal energy conversion, where sunlight can be absorbed to convert it into heat can stand as an alternative for this purpose. Graphene dispersed with different substrates enables us to get torsion control over light absorption and heat transport. This work discusses the optothermal properties of graphene-based coatings on different substrates such as CuO, MAPBI3, Fe, etc. The optothermal properties of such CuO-graphene, MAPBI3-graphene, and Fe-graphene combinations display the highest average absorptance of 96.8% across the solar spectrum between 0.2 and 2.5 μm followed by 86.7% by MAPBI3-graphene. However, Fe-graphene depicts a significantly lower value of 24.3%. A critical inspection of these optothermal properties would enrich one with critical knowledge of design optimisation in graphene-coated solar absorbers. Thus, the data collection time is greatly reduced using ML compared to running simulations which have a step size of about 8 h per change. Where the machine learning efficacy is 98% for the thickness optimization of Fe, CuO, and MAPBI3 with 25% test data. Of much potential interest are the solar absorbers developed using these materials in fields such as solar thermal energy harvesting, air/water heaters, and industrial heating systems.</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":\"15 1\",\"pages\":\"4599\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-02-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11805908/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-024-83486-1\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-024-83486-1","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Analysis of graphene coatings on various metallic/oxide crystal/composite material substrates using machine learning for enhanced solar thermal energy conversion.
Because energy interest demands clean and sustainability in the last ten years. Solar thermal energy conversion, where sunlight can be absorbed to convert it into heat can stand as an alternative for this purpose. Graphene dispersed with different substrates enables us to get torsion control over light absorption and heat transport. This work discusses the optothermal properties of graphene-based coatings on different substrates such as CuO, MAPBI3, Fe, etc. The optothermal properties of such CuO-graphene, MAPBI3-graphene, and Fe-graphene combinations display the highest average absorptance of 96.8% across the solar spectrum between 0.2 and 2.5 μm followed by 86.7% by MAPBI3-graphene. However, Fe-graphene depicts a significantly lower value of 24.3%. A critical inspection of these optothermal properties would enrich one with critical knowledge of design optimisation in graphene-coated solar absorbers. Thus, the data collection time is greatly reduced using ML compared to running simulations which have a step size of about 8 h per change. Where the machine learning efficacy is 98% for the thickness optimization of Fe, CuO, and MAPBI3 with 25% test data. Of much potential interest are the solar absorbers developed using these materials in fields such as solar thermal energy harvesting, air/water heaters, and industrial heating systems.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.