高阶抗生素组合内的相互作用不影响细菌的适应速率。

IF 3.1 2区 环境科学与生态学 Q2 ECOLOGY
Evolution Pub Date : 2025-02-07 DOI:10.1093/evolut/qpaf023
Natalie Ann Lozano-Huntelman, Emoni Cook, Austin Bullivant, Nick Ida, April Zhou, Sada Boyd, Pamela J Yeh
{"title":"高阶抗生素组合内的相互作用不影响细菌的适应速率。","authors":"Natalie Ann Lozano-Huntelman, Emoni Cook, Austin Bullivant, Nick Ida, April Zhou, Sada Boyd, Pamela J Yeh","doi":"10.1093/evolut/qpaf023","DOIUrl":null,"url":null,"abstract":"<p><p>The prevalence and strength of antibiotic resistance has led to an ongoing battle between the development of new treatments and the evolution of resistance. Combining multiple drugs simultaneously is a potential solution for combating antibiotic resistance. However, this approach introduces new factors that must be considered, including the influence of drug interactions on the rate of resistance evolution. When antibiotics are used in combination, their effects can be additive, synergistic, or antagonistic. In this study, we investigated the effect of higher-order interactions involving three drugs on resistance evolution in Staphylococcus epidermidis. Previous studies have shown that synergistic interactions can increase the adaptation rate. However, the effects of higher-order interactions on rates of adaptation are unclear. We investigated the adaptation of Staphylococcus epidermidis to single-, two-, and three-drug environments to assess how interactions within drug combinations influence the rate of adaptation. We analyzed both the overall interaction and emergent interaction, the latter being a unique interaction that occurs in three-drug combinations due to the presence of all three drugs, rather than simply strong pairwise interactions. Our results show that neither the overall interactions nor the emergent interactions affect adaptation rates.</p>","PeriodicalId":12082,"journal":{"name":"Evolution","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Interactions within higher-order antibiotic combinations do not influence the rate of adaptation in bacteria.\",\"authors\":\"Natalie Ann Lozano-Huntelman, Emoni Cook, Austin Bullivant, Nick Ida, April Zhou, Sada Boyd, Pamela J Yeh\",\"doi\":\"10.1093/evolut/qpaf023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The prevalence and strength of antibiotic resistance has led to an ongoing battle between the development of new treatments and the evolution of resistance. Combining multiple drugs simultaneously is a potential solution for combating antibiotic resistance. However, this approach introduces new factors that must be considered, including the influence of drug interactions on the rate of resistance evolution. When antibiotics are used in combination, their effects can be additive, synergistic, or antagonistic. In this study, we investigated the effect of higher-order interactions involving three drugs on resistance evolution in Staphylococcus epidermidis. Previous studies have shown that synergistic interactions can increase the adaptation rate. However, the effects of higher-order interactions on rates of adaptation are unclear. We investigated the adaptation of Staphylococcus epidermidis to single-, two-, and three-drug environments to assess how interactions within drug combinations influence the rate of adaptation. We analyzed both the overall interaction and emergent interaction, the latter being a unique interaction that occurs in three-drug combinations due to the presence of all three drugs, rather than simply strong pairwise interactions. Our results show that neither the overall interactions nor the emergent interactions affect adaptation rates.</p>\",\"PeriodicalId\":12082,\"journal\":{\"name\":\"Evolution\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-02-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Evolution\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1093/evolut/qpaf023\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Evolution","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1093/evolut/qpaf023","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

抗生素耐药性的普遍性和强度导致了新疗法的发展与耐药性的演变之间的持续斗争。同时结合多种药物是对抗抗生素耐药性的潜在解决方案。然而,这种方法引入了必须考虑的新因素,包括药物相互作用对耐药性进化速度的影响。当抗生素联合使用时,它们的作用可以是相加的、协同的或拮抗的。在这项研究中,我们研究了三种药物的高阶相互作用对表皮葡萄球菌耐药性进化的影响。以往的研究表明,协同作用可以提高适应速率。然而,高阶相互作用对适应速率的影响尚不清楚。我们研究了表皮葡萄球菌对单药、双药和三药环境的适应,以评估药物组合内的相互作用如何影响适应速度。我们分析了整体相互作用和紧急相互作用,后者是由于所有三种药物的存在而在三种药物组合中发生的独特相互作用,而不是简单的强成对相互作用。我们的研究结果表明,整体相互作用和紧急相互作用都不会影响适应率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Interactions within higher-order antibiotic combinations do not influence the rate of adaptation in bacteria.

The prevalence and strength of antibiotic resistance has led to an ongoing battle between the development of new treatments and the evolution of resistance. Combining multiple drugs simultaneously is a potential solution for combating antibiotic resistance. However, this approach introduces new factors that must be considered, including the influence of drug interactions on the rate of resistance evolution. When antibiotics are used in combination, their effects can be additive, synergistic, or antagonistic. In this study, we investigated the effect of higher-order interactions involving three drugs on resistance evolution in Staphylococcus epidermidis. Previous studies have shown that synergistic interactions can increase the adaptation rate. However, the effects of higher-order interactions on rates of adaptation are unclear. We investigated the adaptation of Staphylococcus epidermidis to single-, two-, and three-drug environments to assess how interactions within drug combinations influence the rate of adaptation. We analyzed both the overall interaction and emergent interaction, the latter being a unique interaction that occurs in three-drug combinations due to the presence of all three drugs, rather than simply strong pairwise interactions. Our results show that neither the overall interactions nor the emergent interactions affect adaptation rates.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Evolution
Evolution 环境科学-进化生物学
CiteScore
5.00
自引率
9.10%
发文量
0
审稿时长
3-6 weeks
期刊介绍: Evolution, published for the Society for the Study of Evolution, is the premier publication devoted to the study of organic evolution and the integration of the various fields of science concerned with evolution. The journal presents significant and original results that extend our understanding of evolutionary phenomena and processes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信