阐明酿酒酵母乙二醇代谢的挑战。

IF 2.4 4区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Vittorio Giorgio Senatore, Fiorella Masotti, Riccardo Milanesi, Sofia Ceccarossi, Letizia Maestroni, Immacolata Serra, Paola Branduardi
{"title":"阐明酿酒酵母乙二醇代谢的挑战。","authors":"Vittorio Giorgio Senatore, Fiorella Masotti, Riccardo Milanesi, Sofia Ceccarossi, Letizia Maestroni, Immacolata Serra, Paola Branduardi","doi":"10.1093/femsyr/foaf006","DOIUrl":null,"url":null,"abstract":"<p><p>Polyethylene terephthalate (PET) is one of the most used polymers in the packaging industry; enzymatic recycling is emerging as a sustainable strategy to deal with waste PET, producing the virgin monomers terephthalic acid and ethylene glycol (EG). These monomers can be feedstocks for further microbial transformations. While EG metabolism has been uncovered in bacteria, in yeast the pathway for the oxidation to glycolic acid (GA) has only been proposed, but never experimentally elucidated. In this work, we investigated in Saccharomyces cerevisiae the potential contribution to this metabolism of two endogenous genes, YLL056C (a putative alcohol dehydrogenase) and GOR1 (glyoxylate reductase). Secondly, the possible role of alcohol dehydrogenases (ADHs) was considered, too. Finally, two heterologous genes (gox0313 from Gluconobacter oxydans and AOX1 from Komagataella phaffii) were expressed with the intent to push EG oxidation toward GA. Our main findings revealed that (i) Gor1, Yll056c, and ADHs are not involved in EG oxidation and (ii) the bottleneck of the catabolism is the first step in the pathway, due to the endogenous mechanisms for aldehyde detoxification. Multiomics studies are required to completely elucidate the pathway for EG catabolism, while further engineering directed toward relieving the bottleneck is needed to fully unleash the potential of yeasts for the upcycling of EG to GA.</p>","PeriodicalId":12290,"journal":{"name":"FEMS yeast research","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11878538/pdf/","citationCount":"0","resultStr":"{\"title\":\"Challenges in elucidating ethylene glycol metabolism in Saccharomyces cerevisiae.\",\"authors\":\"Vittorio Giorgio Senatore, Fiorella Masotti, Riccardo Milanesi, Sofia Ceccarossi, Letizia Maestroni, Immacolata Serra, Paola Branduardi\",\"doi\":\"10.1093/femsyr/foaf006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Polyethylene terephthalate (PET) is one of the most used polymers in the packaging industry; enzymatic recycling is emerging as a sustainable strategy to deal with waste PET, producing the virgin monomers terephthalic acid and ethylene glycol (EG). These monomers can be feedstocks for further microbial transformations. While EG metabolism has been uncovered in bacteria, in yeast the pathway for the oxidation to glycolic acid (GA) has only been proposed, but never experimentally elucidated. In this work, we investigated in Saccharomyces cerevisiae the potential contribution to this metabolism of two endogenous genes, YLL056C (a putative alcohol dehydrogenase) and GOR1 (glyoxylate reductase). Secondly, the possible role of alcohol dehydrogenases (ADHs) was considered, too. Finally, two heterologous genes (gox0313 from Gluconobacter oxydans and AOX1 from Komagataella phaffii) were expressed with the intent to push EG oxidation toward GA. Our main findings revealed that (i) Gor1, Yll056c, and ADHs are not involved in EG oxidation and (ii) the bottleneck of the catabolism is the first step in the pathway, due to the endogenous mechanisms for aldehyde detoxification. Multiomics studies are required to completely elucidate the pathway for EG catabolism, while further engineering directed toward relieving the bottleneck is needed to fully unleash the potential of yeasts for the upcycling of EG to GA.</p>\",\"PeriodicalId\":12290,\"journal\":{\"name\":\"FEMS yeast research\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-01-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11878538/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"FEMS yeast research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/femsyr/foaf006\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"FEMS yeast research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/femsyr/foaf006","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

聚对苯二甲酸乙二醇酯(PET)是包装工业中使用最多的聚合物之一;酶法回收利用正成为处理废弃PET的一种可持续的策略,生产原生单体对苯二甲酸和乙二醇(EG)。这些单体可以作为进一步微生物转化的原料。虽然EG的代谢在细菌中已经被发现,但在酵母中氧化为乙醇酸(GA)的途径仅被提出,但从未被实验阐明。在这项工作中,我们研究了两个内源性基因YLL056C(一种假定的酒精脱氢酶)和GOR1(一种乙醛酸还原酶)在酿酒酵母这种代谢中的潜在贡献。其次,还考虑了乙醇脱氢酶(ADHs)可能的作用。最后,表达两个异源基因(来自氧化葡萄糖杆菌的gox0313和来自Komagataella phaffii的AOX1),目的是推动EG向GA氧化。我们的主要研究结果表明,i) Gor1、Yll056c和ADHs不参与EG氧化,ii)由于内源性的醛解毒机制,分解代谢的瓶颈是该途径的第一步。需要多组学研究来完全阐明EG分解代谢的途径,而进一步的工程设计则需要解决瓶颈,以充分释放酵母将EG升级为GA的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Challenges in elucidating ethylene glycol metabolism in Saccharomyces cerevisiae.

Polyethylene terephthalate (PET) is one of the most used polymers in the packaging industry; enzymatic recycling is emerging as a sustainable strategy to deal with waste PET, producing the virgin monomers terephthalic acid and ethylene glycol (EG). These monomers can be feedstocks for further microbial transformations. While EG metabolism has been uncovered in bacteria, in yeast the pathway for the oxidation to glycolic acid (GA) has only been proposed, but never experimentally elucidated. In this work, we investigated in Saccharomyces cerevisiae the potential contribution to this metabolism of two endogenous genes, YLL056C (a putative alcohol dehydrogenase) and GOR1 (glyoxylate reductase). Secondly, the possible role of alcohol dehydrogenases (ADHs) was considered, too. Finally, two heterologous genes (gox0313 from Gluconobacter oxydans and AOX1 from Komagataella phaffii) were expressed with the intent to push EG oxidation toward GA. Our main findings revealed that (i) Gor1, Yll056c, and ADHs are not involved in EG oxidation and (ii) the bottleneck of the catabolism is the first step in the pathway, due to the endogenous mechanisms for aldehyde detoxification. Multiomics studies are required to completely elucidate the pathway for EG catabolism, while further engineering directed toward relieving the bottleneck is needed to fully unleash the potential of yeasts for the upcycling of EG to GA.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
FEMS yeast research
FEMS yeast research 生物-生物工程与应用微生物
CiteScore
5.70
自引率
6.20%
发文量
54
审稿时长
1 months
期刊介绍: FEMS Yeast Research offers efficient publication of high-quality original Research Articles, Mini-reviews, Letters to the Editor, Perspectives and Commentaries that express current opinions. The journal will select for publication only those manuscripts deemed to be of major relevance to the field and generally will not consider articles that are largely descriptive without insights on underlying mechanism or biology. Submissions on any yeast species are welcome provided they report results within the scope outlined below and are of significance to the yeast field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信