Aakriti Singh, Meike van den Burgh, Vigneshwarr Boopathy, Patrick van Nierop Y Sanchez, Josephine Bageritz, Ingrid Lohmann, Katrin Domsch
{"title":"成年肌肉前体中触角基(Antp)的自主功能直接将Hox基因与成年肌肉发育联系起来。","authors":"Aakriti Singh, Meike van den Burgh, Vigneshwarr Boopathy, Patrick van Nierop Y Sanchez, Josephine Bageritz, Ingrid Lohmann, Katrin Domsch","doi":"10.1242/dev.204341","DOIUrl":null,"url":null,"abstract":"<p><p>The evolutionarily conserved Hox genes define segment identities along the anterior-posterior axis and are expressed in most cell types within each segment, performing specific functions tailored to cellular needs. It has been suggested previously that Drosophila adult flight muscles in the second thoracic segment (T2) develop without direct Hox gene input, relying instead on ectodermal signals to shape their identity. However, our research, leveraging single-cell transcriptomics of Drosophila wing discs and Hox perturbation experiments using CRISPR technology and gain-of-function assays, unveiled a more intricate regulatory landscape. We found that the Hox protein Antennapedia (Antp) is essential for adult flight muscle development, acting in two crucial ways: by regulating the cell cycle rate of adult muscle precursors (AMPs) through repression of proliferation genes, and by guiding flight muscle fate via regulation of Hedgehog (Hh) signalling during cell fate establishment. Antp, along with its co-factor Apterous (Ap), directly interacts with the patched (ptc) locus to control its expression in AMPs. These findings challenge the notion of T2 as a 'Hox-free' zone, highlighting the indispensable role of low-level Antp expression in adult muscle development.</p>","PeriodicalId":11375,"journal":{"name":"Development","volume":" ","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Autonomous function of Antennapedia in adult muscle precursors directly connects Hox genes to adult muscle development.\",\"authors\":\"Aakriti Singh, Meike van den Burgh, Vigneshwarr Boopathy, Patrick van Nierop Y Sanchez, Josephine Bageritz, Ingrid Lohmann, Katrin Domsch\",\"doi\":\"10.1242/dev.204341\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The evolutionarily conserved Hox genes define segment identities along the anterior-posterior axis and are expressed in most cell types within each segment, performing specific functions tailored to cellular needs. It has been suggested previously that Drosophila adult flight muscles in the second thoracic segment (T2) develop without direct Hox gene input, relying instead on ectodermal signals to shape their identity. However, our research, leveraging single-cell transcriptomics of Drosophila wing discs and Hox perturbation experiments using CRISPR technology and gain-of-function assays, unveiled a more intricate regulatory landscape. We found that the Hox protein Antennapedia (Antp) is essential for adult flight muscle development, acting in two crucial ways: by regulating the cell cycle rate of adult muscle precursors (AMPs) through repression of proliferation genes, and by guiding flight muscle fate via regulation of Hedgehog (Hh) signalling during cell fate establishment. Antp, along with its co-factor Apterous (Ap), directly interacts with the patched (ptc) locus to control its expression in AMPs. These findings challenge the notion of T2 as a 'Hox-free' zone, highlighting the indispensable role of low-level Antp expression in adult muscle development.</p>\",\"PeriodicalId\":11375,\"journal\":{\"name\":\"Development\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-02-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Development\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1242/dev.204341\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/2/17 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"DEVELOPMENTAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Development","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1242/dev.204341","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/17 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
Autonomous function of Antennapedia in adult muscle precursors directly connects Hox genes to adult muscle development.
The evolutionarily conserved Hox genes define segment identities along the anterior-posterior axis and are expressed in most cell types within each segment, performing specific functions tailored to cellular needs. It has been suggested previously that Drosophila adult flight muscles in the second thoracic segment (T2) develop without direct Hox gene input, relying instead on ectodermal signals to shape their identity. However, our research, leveraging single-cell transcriptomics of Drosophila wing discs and Hox perturbation experiments using CRISPR technology and gain-of-function assays, unveiled a more intricate regulatory landscape. We found that the Hox protein Antennapedia (Antp) is essential for adult flight muscle development, acting in two crucial ways: by regulating the cell cycle rate of adult muscle precursors (AMPs) through repression of proliferation genes, and by guiding flight muscle fate via regulation of Hedgehog (Hh) signalling during cell fate establishment. Antp, along with its co-factor Apterous (Ap), directly interacts with the patched (ptc) locus to control its expression in AMPs. These findings challenge the notion of T2 as a 'Hox-free' zone, highlighting the indispensable role of low-level Antp expression in adult muscle development.
期刊介绍:
Development’s scope covers all aspects of plant and animal development, including stem cell biology and regeneration. The single most important criterion for acceptance in Development is scientific excellence. Research papers (articles and reports) should therefore pose and test a significant hypothesis or address a significant question, and should provide novel perspectives that advance our understanding of development. We also encourage submission of papers that use computational methods or mathematical models to obtain significant new insights into developmental biology topics. Manuscripts that are descriptive in nature will be considered only when they lay important groundwork for a field and/or provide novel resources for understanding developmental processes of broad interest to the community.
Development includes a Techniques and Resources section for the publication of new methods, datasets, and other types of resources. Papers describing new techniques should include a proof-of-principle demonstration that the technique is valuable to the developmental biology community; they need not include in-depth follow-up analysis. The technique must be described in sufficient detail to be easily replicated by other investigators. Development will also consider protocol-type papers of exceptional interest to the community. We welcome submission of Resource papers, for example those reporting new databases, systems-level datasets, or genetic resources of major value to the developmental biology community. For all papers, the data or resource described must be made available to the community with minimal restrictions upon publication.
To aid navigability, Development has dedicated sections of the journal to stem cells & regeneration and to human development. The criteria for acceptance into these sections is identical to those outlined above. Authors and editors are encouraged to nominate appropriate manuscripts for inclusion in one of these sections.