基于深度学习的自身免疫性疾病预测。

IF 3.9 2区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Donghong Yang, Xin Peng, Senlin Zheng, Shenglan Peng
{"title":"基于深度学习的自身免疫性疾病预测。","authors":"Donghong Yang, Xin Peng, Senlin Zheng, Shenglan Peng","doi":"10.1038/s41598-025-88477-4","DOIUrl":null,"url":null,"abstract":"<p><p>Autoimmune Diseases are a complex group of diseases caused by the immune system mistakenly attacking body tissues. Their etiology involves multiple factors such as genetics, environmental factors, and abnormalities in immune cells, making prediction and treatment challenging. T cells, as a core component of the immune system, play a critical role in the human immune system and have a significant impact on the pathogenesis of autoimmune diseases. Several studies have demonstrated that T-cell receptors (TCRs) may be involved in the pathogenesis of various autoimmune diseases, which provides strong theoretical support and new therapeutic targets for the prediction and treatment of autoimmune diseases. This study focuses on the prediction of several autoimmune diseases mediated by T cells, and proposes two models: one is the AutoY model based on convolutional neural networks, and the other is the LSTMY model, a bidirectional LSTM network model that integrates the attention mechanism. Experimental results show that both models exhibit good performance in the prediction of the four autoimmune diseases, with the AutoY model performing slightly better in comparison. In particular, the average area under the ROC curve (AUC) of the AutoY model exceeded 0.93 in the prediction of all the diseases, and the AUC value reached 0.99 in two diseases, type 1 diabetes and multiple sclerosis. These results demonstrate the high accuracy, stability, and good generalization ability of the two models, which makes them promising tools in the field of autoimmune disease prediction and provides support for the use of the TCR bank for the noninvasive detection of autoimmune disease non-invasive detection is supported.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"4576"},"PeriodicalIF":3.9000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11806040/pdf/","citationCount":"0","resultStr":"{\"title\":\"Deep learning-based prediction of autoimmune diseases.\",\"authors\":\"Donghong Yang, Xin Peng, Senlin Zheng, Shenglan Peng\",\"doi\":\"10.1038/s41598-025-88477-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Autoimmune Diseases are a complex group of diseases caused by the immune system mistakenly attacking body tissues. Their etiology involves multiple factors such as genetics, environmental factors, and abnormalities in immune cells, making prediction and treatment challenging. T cells, as a core component of the immune system, play a critical role in the human immune system and have a significant impact on the pathogenesis of autoimmune diseases. Several studies have demonstrated that T-cell receptors (TCRs) may be involved in the pathogenesis of various autoimmune diseases, which provides strong theoretical support and new therapeutic targets for the prediction and treatment of autoimmune diseases. This study focuses on the prediction of several autoimmune diseases mediated by T cells, and proposes two models: one is the AutoY model based on convolutional neural networks, and the other is the LSTMY model, a bidirectional LSTM network model that integrates the attention mechanism. Experimental results show that both models exhibit good performance in the prediction of the four autoimmune diseases, with the AutoY model performing slightly better in comparison. In particular, the average area under the ROC curve (AUC) of the AutoY model exceeded 0.93 in the prediction of all the diseases, and the AUC value reached 0.99 in two diseases, type 1 diabetes and multiple sclerosis. These results demonstrate the high accuracy, stability, and good generalization ability of the two models, which makes them promising tools in the field of autoimmune disease prediction and provides support for the use of the TCR bank for the noninvasive detection of autoimmune disease non-invasive detection is supported.</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":\"15 1\",\"pages\":\"4576\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-02-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11806040/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-025-88477-4\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-88477-4","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

自身免疫性疾病是一组复杂的疾病,由免疫系统错误地攻击身体组织引起。其病因涉及多种因素,如遗传、环境因素和免疫细胞异常,这使得预测和治疗具有挑战性。T细胞作为免疫系统的核心组成部分,在人体免疫系统中起着至关重要的作用,对自身免疫性疾病的发病机制有重要影响。多项研究表明t细胞受体(TCRs)可能参与多种自身免疫性疾病的发病机制,为自身免疫性疾病的预测和治疗提供了强有力的理论支持和新的治疗靶点。本研究重点关注T细胞介导的几种自身免疫性疾病的预测,提出了两种模型:一种是基于卷积神经网络的AutoY模型,另一种是LSTMY模型,这是一种集成了注意机制的双向LSTM网络模型。实验结果表明,两种模型对四种自身免疫性疾病的预测都有较好的效果,其中AutoY模型的预测效果略好。特别是AutoY模型预测所有疾病的ROC曲线下平均面积(AUC)均超过0.93,其中1型糖尿病和多发性硬化症两种疾病的AUC值达到0.99。这些结果证明了这两种模型具有较高的准确性、稳定性和良好的泛化能力,使它们成为自身免疫性疾病预测领域有前景的工具,并为利用TCR库进行自身免疫性疾病的无创检测提供了支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Deep learning-based prediction of autoimmune diseases.

Deep learning-based prediction of autoimmune diseases.

Deep learning-based prediction of autoimmune diseases.

Deep learning-based prediction of autoimmune diseases.

Autoimmune Diseases are a complex group of diseases caused by the immune system mistakenly attacking body tissues. Their etiology involves multiple factors such as genetics, environmental factors, and abnormalities in immune cells, making prediction and treatment challenging. T cells, as a core component of the immune system, play a critical role in the human immune system and have a significant impact on the pathogenesis of autoimmune diseases. Several studies have demonstrated that T-cell receptors (TCRs) may be involved in the pathogenesis of various autoimmune diseases, which provides strong theoretical support and new therapeutic targets for the prediction and treatment of autoimmune diseases. This study focuses on the prediction of several autoimmune diseases mediated by T cells, and proposes two models: one is the AutoY model based on convolutional neural networks, and the other is the LSTMY model, a bidirectional LSTM network model that integrates the attention mechanism. Experimental results show that both models exhibit good performance in the prediction of the four autoimmune diseases, with the AutoY model performing slightly better in comparison. In particular, the average area under the ROC curve (AUC) of the AutoY model exceeded 0.93 in the prediction of all the diseases, and the AUC value reached 0.99 in two diseases, type 1 diabetes and multiple sclerosis. These results demonstrate the high accuracy, stability, and good generalization ability of the two models, which makes them promising tools in the field of autoimmune disease prediction and provides support for the use of the TCR bank for the noninvasive detection of autoimmune disease non-invasive detection is supported.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Scientific Reports
Scientific Reports Natural Science Disciplines-
CiteScore
7.50
自引率
4.30%
发文量
19567
审稿时长
3.9 months
期刊介绍: We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections. Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021). •Engineering Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live. •Physical sciences Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics. •Earth and environmental sciences Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems. •Biological sciences Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants. •Health sciences The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信