{"title":"基于深度学习的自身免疫性疾病预测。","authors":"Donghong Yang, Xin Peng, Senlin Zheng, Shenglan Peng","doi":"10.1038/s41598-025-88477-4","DOIUrl":null,"url":null,"abstract":"<p><p>Autoimmune Diseases are a complex group of diseases caused by the immune system mistakenly attacking body tissues. Their etiology involves multiple factors such as genetics, environmental factors, and abnormalities in immune cells, making prediction and treatment challenging. T cells, as a core component of the immune system, play a critical role in the human immune system and have a significant impact on the pathogenesis of autoimmune diseases. Several studies have demonstrated that T-cell receptors (TCRs) may be involved in the pathogenesis of various autoimmune diseases, which provides strong theoretical support and new therapeutic targets for the prediction and treatment of autoimmune diseases. This study focuses on the prediction of several autoimmune diseases mediated by T cells, and proposes two models: one is the AutoY model based on convolutional neural networks, and the other is the LSTMY model, a bidirectional LSTM network model that integrates the attention mechanism. Experimental results show that both models exhibit good performance in the prediction of the four autoimmune diseases, with the AutoY model performing slightly better in comparison. In particular, the average area under the ROC curve (AUC) of the AutoY model exceeded 0.93 in the prediction of all the diseases, and the AUC value reached 0.99 in two diseases, type 1 diabetes and multiple sclerosis. These results demonstrate the high accuracy, stability, and good generalization ability of the two models, which makes them promising tools in the field of autoimmune disease prediction and provides support for the use of the TCR bank for the noninvasive detection of autoimmune disease non-invasive detection is supported.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"4576"},"PeriodicalIF":3.9000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11806040/pdf/","citationCount":"0","resultStr":"{\"title\":\"Deep learning-based prediction of autoimmune diseases.\",\"authors\":\"Donghong Yang, Xin Peng, Senlin Zheng, Shenglan Peng\",\"doi\":\"10.1038/s41598-025-88477-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Autoimmune Diseases are a complex group of diseases caused by the immune system mistakenly attacking body tissues. Their etiology involves multiple factors such as genetics, environmental factors, and abnormalities in immune cells, making prediction and treatment challenging. T cells, as a core component of the immune system, play a critical role in the human immune system and have a significant impact on the pathogenesis of autoimmune diseases. Several studies have demonstrated that T-cell receptors (TCRs) may be involved in the pathogenesis of various autoimmune diseases, which provides strong theoretical support and new therapeutic targets for the prediction and treatment of autoimmune diseases. This study focuses on the prediction of several autoimmune diseases mediated by T cells, and proposes two models: one is the AutoY model based on convolutional neural networks, and the other is the LSTMY model, a bidirectional LSTM network model that integrates the attention mechanism. Experimental results show that both models exhibit good performance in the prediction of the four autoimmune diseases, with the AutoY model performing slightly better in comparison. In particular, the average area under the ROC curve (AUC) of the AutoY model exceeded 0.93 in the prediction of all the diseases, and the AUC value reached 0.99 in two diseases, type 1 diabetes and multiple sclerosis. These results demonstrate the high accuracy, stability, and good generalization ability of the two models, which makes them promising tools in the field of autoimmune disease prediction and provides support for the use of the TCR bank for the noninvasive detection of autoimmune disease non-invasive detection is supported.</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":\"15 1\",\"pages\":\"4576\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-02-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11806040/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-025-88477-4\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-88477-4","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Deep learning-based prediction of autoimmune diseases.
Autoimmune Diseases are a complex group of diseases caused by the immune system mistakenly attacking body tissues. Their etiology involves multiple factors such as genetics, environmental factors, and abnormalities in immune cells, making prediction and treatment challenging. T cells, as a core component of the immune system, play a critical role in the human immune system and have a significant impact on the pathogenesis of autoimmune diseases. Several studies have demonstrated that T-cell receptors (TCRs) may be involved in the pathogenesis of various autoimmune diseases, which provides strong theoretical support and new therapeutic targets for the prediction and treatment of autoimmune diseases. This study focuses on the prediction of several autoimmune diseases mediated by T cells, and proposes two models: one is the AutoY model based on convolutional neural networks, and the other is the LSTMY model, a bidirectional LSTM network model that integrates the attention mechanism. Experimental results show that both models exhibit good performance in the prediction of the four autoimmune diseases, with the AutoY model performing slightly better in comparison. In particular, the average area under the ROC curve (AUC) of the AutoY model exceeded 0.93 in the prediction of all the diseases, and the AUC value reached 0.99 in two diseases, type 1 diabetes and multiple sclerosis. These results demonstrate the high accuracy, stability, and good generalization ability of the two models, which makes them promising tools in the field of autoimmune disease prediction and provides support for the use of the TCR bank for the noninvasive detection of autoimmune disease non-invasive detection is supported.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.