基于级联扩增的赤血病爆发前阶段电化学检测。

IF 5.6 1区 化学 Q1 CHEMISTRY, ANALYTICAL
Talanta Pub Date : 2025-05-15 Epub Date: 2025-02-06 DOI:10.1016/j.talanta.2025.127671
Changrui Ye, Hongjie Liu, Shaopeng Wang, Man Zhang, Chaoxin Zhang, Fulin Yang, Fang Shen, Liwei Wang
{"title":"基于级联扩增的赤血病爆发前阶段电化学检测。","authors":"Changrui Ye, Hongjie Liu, Shaopeng Wang, Man Zhang, Chaoxin Zhang, Fulin Yang, Fang Shen, Liwei Wang","doi":"10.1016/j.talanta.2025.127671","DOIUrl":null,"url":null,"abstract":"<p><p>Red tide events caused by Akashiwo sanguinea (A. sanguinea) pose a significant threat to ecosystems. However, studies that offer promising approaches for portable and onsite detection with precise identification of A. sanguinea remain insufficient. In this study, we developed an electrochemical biosensor (E-biosensor) for detecting A. sanguinea combined with cascade amplification strategies, termed TDW-E-biosensor. A predictive relationship was also established to predict algal cell density based on electrochemical signals. The experiment results showed that the TDW-E-biosensor was successfully applied for detecting A. sanguinea at the pre-outbreak stage and demonstrated excellent analytical performance, showing a low limit of detection (LOD) of 0.0676 fM and quantitation (LOQ) of 0.102 fM for the three-electrode system, and a low LOD of 6.873 fg μL<sup>-</sup><sup>1</sup> and LOQ of 20.460 fg μL<sup>-</sup><sup>1</sup> for the portable system. The accuracy of the TDW-E-biosensor was validated through comparison with droplet digital PCR (ddPCR) and Bland-Altman analysis, demonstrating a high level of agreement (a mean difference of 0.132 and a standard deviation of 0.184). The reliability of the predictive relationship was evidenced by controlled laboratory experiments and Bland-Altman analysis. The developed TDW-E-biosensor provides an innovative and promising tool for early warning efforts regarding harmful algae.</p>","PeriodicalId":435,"journal":{"name":"Talanta","volume":"287 ","pages":"127671"},"PeriodicalIF":5.6000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cascade-amplification-based electrochemical detection of Akashiwo sanguinea at pre-outbreak stage.\",\"authors\":\"Changrui Ye, Hongjie Liu, Shaopeng Wang, Man Zhang, Chaoxin Zhang, Fulin Yang, Fang Shen, Liwei Wang\",\"doi\":\"10.1016/j.talanta.2025.127671\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Red tide events caused by Akashiwo sanguinea (A. sanguinea) pose a significant threat to ecosystems. However, studies that offer promising approaches for portable and onsite detection with precise identification of A. sanguinea remain insufficient. In this study, we developed an electrochemical biosensor (E-biosensor) for detecting A. sanguinea combined with cascade amplification strategies, termed TDW-E-biosensor. A predictive relationship was also established to predict algal cell density based on electrochemical signals. The experiment results showed that the TDW-E-biosensor was successfully applied for detecting A. sanguinea at the pre-outbreak stage and demonstrated excellent analytical performance, showing a low limit of detection (LOD) of 0.0676 fM and quantitation (LOQ) of 0.102 fM for the three-electrode system, and a low LOD of 6.873 fg μL<sup>-</sup><sup>1</sup> and LOQ of 20.460 fg μL<sup>-</sup><sup>1</sup> for the portable system. The accuracy of the TDW-E-biosensor was validated through comparison with droplet digital PCR (ddPCR) and Bland-Altman analysis, demonstrating a high level of agreement (a mean difference of 0.132 and a standard deviation of 0.184). The reliability of the predictive relationship was evidenced by controlled laboratory experiments and Bland-Altman analysis. The developed TDW-E-biosensor provides an innovative and promising tool for early warning efforts regarding harmful algae.</p>\",\"PeriodicalId\":435,\"journal\":{\"name\":\"Talanta\",\"volume\":\"287 \",\"pages\":\"127671\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2025-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Talanta\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1016/j.talanta.2025.127671\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/2/6 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Talanta","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.talanta.2025.127671","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/6 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

赤潮(Akashiwo sanguinea, a . sanguinea)引起的赤潮事件对生态系统构成重大威胁。然而,为便携式和现场检测提供有希望的方法的研究仍然不够。在本研究中,我们开发了一种结合级联扩增策略的电化学生物传感器(E-biosensor),称为TDW-E-biosensor。建立了基于电化学信号预测藻细胞密度的预测关系。实验结果表明,tdw -e生物传感器可成功应用于血血弓形虫爆发前的检测,具有良好的分析性能,三电极系统的低检出限(LOD)为0.0676 fM,定量限(LOQ)为0.102 fM,便携式系统的低检出限(LOD)为6.873 fg μL-1, LOQ为20.460 fg μL-1。通过与液滴数字PCR (ddPCR)和Bland-Altman分析的比较,验证了tdw - e生物传感器的准确性,显示出高度的一致性(平均差为0.132,标准差为0.184)。通过对照实验室实验和Bland-Altman分析证明了预测关系的可靠性。开发的tdw - e生物传感器为有害藻类的早期预警工作提供了一种创新和有前途的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cascade-amplification-based electrochemical detection of Akashiwo sanguinea at pre-outbreak stage.

Red tide events caused by Akashiwo sanguinea (A. sanguinea) pose a significant threat to ecosystems. However, studies that offer promising approaches for portable and onsite detection with precise identification of A. sanguinea remain insufficient. In this study, we developed an electrochemical biosensor (E-biosensor) for detecting A. sanguinea combined with cascade amplification strategies, termed TDW-E-biosensor. A predictive relationship was also established to predict algal cell density based on electrochemical signals. The experiment results showed that the TDW-E-biosensor was successfully applied for detecting A. sanguinea at the pre-outbreak stage and demonstrated excellent analytical performance, showing a low limit of detection (LOD) of 0.0676 fM and quantitation (LOQ) of 0.102 fM for the three-electrode system, and a low LOD of 6.873 fg μL-1 and LOQ of 20.460 fg μL-1 for the portable system. The accuracy of the TDW-E-biosensor was validated through comparison with droplet digital PCR (ddPCR) and Bland-Altman analysis, demonstrating a high level of agreement (a mean difference of 0.132 and a standard deviation of 0.184). The reliability of the predictive relationship was evidenced by controlled laboratory experiments and Bland-Altman analysis. The developed TDW-E-biosensor provides an innovative and promising tool for early warning efforts regarding harmful algae.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Talanta
Talanta 化学-分析化学
CiteScore
12.30
自引率
4.90%
发文量
861
审稿时长
29 days
期刊介绍: Talanta provides a forum for the publication of original research papers, short communications, and critical reviews in all branches of pure and applied analytical chemistry. Papers are evaluated based on established guidelines, including the fundamental nature of the study, scientific novelty, substantial improvement or advantage over existing technology or methods, and demonstrated analytical applicability. Original research papers on fundamental studies, and on novel sensor and instrumentation developments, are encouraged. Novel or improved applications in areas such as clinical and biological chemistry, environmental analysis, geochemistry, materials science and engineering, and analytical platforms for omics development are welcome. Analytical performance of methods should be determined, including interference and matrix effects, and methods should be validated by comparison with a standard method, or analysis of a certified reference material. Simple spiking recoveries may not be sufficient. The developed method should especially comprise information on selectivity, sensitivity, detection limits, accuracy, and reliability. However, applying official validation or robustness studies to a routine method or technique does not necessarily constitute novelty. Proper statistical treatment of the data should be provided. Relevant literature should be cited, including related publications by the authors, and authors should discuss how their proposed methodology compares with previously reported methods.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信