利用双氮化硼和单层石墨烯的抗癌药物递送效率:来自DFT的见解。

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
ACS Applied Bio Materials Pub Date : 2025-03-17 Epub Date: 2025-02-07 DOI:10.1021/acsabm.4c01507
Basant Roondhe, Rajeev Ahuja, Wei Luo
{"title":"利用双氮化硼和单层石墨烯的抗癌药物递送效率:来自DFT的见解。","authors":"Basant Roondhe, Rajeev Ahuja, Wei Luo","doi":"10.1021/acsabm.4c01507","DOIUrl":null,"url":null,"abstract":"<p><p>An extensive amount of research has been focused on the development of state-of-the-art methodologies for drug administration. In this study, we have utilized density functional theory (DFT) for assessing the ability of a Twin monolayer of boron nitride and graphene, i.e., Twin-BN and Twin-Gr monolayer, as a carrier for delivering four anticancer drugs (ACDs) 5-fluorouracil (5-FU), gemcitabine (GC), cyclophosphamide (CP), and mercaptopurine (6-MP). Also, the properties of all drug molecules along with the Twin-BN and Twin-Gr and the complex of the ACD-Twin-BN/Gr monolayer were investigated to explore the usefulness of the Twin-BN and Twin-Gr monolayer as ACD carrier. The interaction between the monolayers and ACDs confirmed that the adsorption is feasible as the adsorption energy ranged from -0.41 eV to -0.95 eV in the case of Twin-BN, while it ranged from -0.43 eV to -0.61 eV in the case of Twin-Gr. Additionally, the change in the band gap of the Twin-BN and Twin-Gr monolayers after the adsorption of ACDs was considerable. We can conclude that among both monolayers, Twin-BN can be utilized as a highly effective carrier for delivering ACDs. Our findings showed that the monolayer Twin-BN could be explored as a drug transporter for highly efficient carrying of the considered ACDs.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":" ","pages":"2015-2026"},"PeriodicalIF":4.6000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11921028/pdf/","citationCount":"0","resultStr":"{\"title\":\"Harnessing the Efficiency of Twin Boron Nitride and Graphene Monolayers for Anticancer Drug Delivery: Insights from DFT.\",\"authors\":\"Basant Roondhe, Rajeev Ahuja, Wei Luo\",\"doi\":\"10.1021/acsabm.4c01507\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>An extensive amount of research has been focused on the development of state-of-the-art methodologies for drug administration. In this study, we have utilized density functional theory (DFT) for assessing the ability of a Twin monolayer of boron nitride and graphene, i.e., Twin-BN and Twin-Gr monolayer, as a carrier for delivering four anticancer drugs (ACDs) 5-fluorouracil (5-FU), gemcitabine (GC), cyclophosphamide (CP), and mercaptopurine (6-MP). Also, the properties of all drug molecules along with the Twin-BN and Twin-Gr and the complex of the ACD-Twin-BN/Gr monolayer were investigated to explore the usefulness of the Twin-BN and Twin-Gr monolayer as ACD carrier. The interaction between the monolayers and ACDs confirmed that the adsorption is feasible as the adsorption energy ranged from -0.41 eV to -0.95 eV in the case of Twin-BN, while it ranged from -0.43 eV to -0.61 eV in the case of Twin-Gr. Additionally, the change in the band gap of the Twin-BN and Twin-Gr monolayers after the adsorption of ACDs was considerable. We can conclude that among both monolayers, Twin-BN can be utilized as a highly effective carrier for delivering ACDs. Our findings showed that the monolayer Twin-BN could be explored as a drug transporter for highly efficient carrying of the considered ACDs.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":\" \",\"pages\":\"2015-2026\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-03-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11921028/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1021/acsabm.4c01507\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/2/7 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/acsabm.4c01507","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/7 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

大量的研究集中在发展最先进的药物管理方法上。在这项研究中,我们利用密度泛函理论(DFT)来评估氮化硼和石墨烯的双单层,即双bn和双gr单层,作为四种抗癌药物(ACDs)的载体的能力,5-氟尿嘧啶(5-FU),吉西他宾(GC),环磷酰胺(CP)和巯基嘌呤(6-MP)。此外,我们还研究了所有药物分子与Twin-BN和Twin-Gr以及ACD-Twin-BN/Gr单层的配合物的性质,以探索Twin-BN和Twin-Gr单层作为ACD载体的有效性。单分子膜与ACDs的相互作用证实了吸附的可行性,Twin-BN的吸附能在-0.41 eV ~ -0.95 eV之间,Twin-Gr的吸附能在-0.43 eV ~ -0.61 eV之间。吸附ACDs后,Twin-BN和Twin-Gr单层的带隙变化较大。我们可以得出结论,在这两种单层中,Twin-BN可以作为一种高效的载体来递送ACDs。我们的研究结果表明,单层Twin-BN可以作为一种药物转运体,用于高效携带所考虑的ACDs。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Harnessing the Efficiency of Twin Boron Nitride and Graphene Monolayers for Anticancer Drug Delivery: Insights from DFT.

An extensive amount of research has been focused on the development of state-of-the-art methodologies for drug administration. In this study, we have utilized density functional theory (DFT) for assessing the ability of a Twin monolayer of boron nitride and graphene, i.e., Twin-BN and Twin-Gr monolayer, as a carrier for delivering four anticancer drugs (ACDs) 5-fluorouracil (5-FU), gemcitabine (GC), cyclophosphamide (CP), and mercaptopurine (6-MP). Also, the properties of all drug molecules along with the Twin-BN and Twin-Gr and the complex of the ACD-Twin-BN/Gr monolayer were investigated to explore the usefulness of the Twin-BN and Twin-Gr monolayer as ACD carrier. The interaction between the monolayers and ACDs confirmed that the adsorption is feasible as the adsorption energy ranged from -0.41 eV to -0.95 eV in the case of Twin-BN, while it ranged from -0.43 eV to -0.61 eV in the case of Twin-Gr. Additionally, the change in the band gap of the Twin-BN and Twin-Gr monolayers after the adsorption of ACDs was considerable. We can conclude that among both monolayers, Twin-BN can be utilized as a highly effective carrier for delivering ACDs. Our findings showed that the monolayer Twin-BN could be explored as a drug transporter for highly efficient carrying of the considered ACDs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊介绍: ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信