Kyungha Lee, Seong Hee Bhoo, Sang-Won Lee, Man-Ho Cho
{"title":"使用融合类黄酮o -甲基转移酶的类黄酮选择性二甲基化","authors":"Kyungha Lee, Seong Hee Bhoo, Sang-Won Lee, Man-Ho Cho","doi":"10.1186/s13765-025-00983-1","DOIUrl":null,"url":null,"abstract":"<div><p>Flavonoids are often decorated with methyl groups, which are catalyzed by flavonoid <i>O</i>-methyltransferases (FOMTs). Most FOMTs methylate flavonoids in a regiospecific manner. Because of the regiospecific nature of FOMTs, the synthesis of polymethoxyflavonoids is accomplished by multiple <i>O</i>-methylation steps. The multistep synthesis of dimethoxyflavonoids can be efficiently performed by a one-pot procedure using a multienzyme biocatalyst. For the one-pot production of dimethoxyflavonoids, fusion FOMTs were generated by the combination of two different regiospecific FOMTs. RdOMT10 (flavonoid 3-OMT), OsNOMT (flavonoid 7-OMT), and ObFOMT5 (flavonoid 4'-OMT) were used in the FOMT fusion. The fusion FOMTs (OsNOMT/ObFOMT5, OsNOMT/RdOMT10, and ObFOMT5/RdOMT10) were heterologously expressed in <i>Escherichia coli</i>. Activity assays of the recombinant fusion FOMTs demonstrated that OsNOMT/ObFOMT5, OsNOMT/RdOMT10, and ObFOMT5/RdOMT10 catalyze 7/4'-<i>O</i>-methylations, 7/3-<i>O</i>-methylations, and 4'/3-<i>O</i>-methylations of flavonoids, respectively. OsNOMT/ObFOMT5 and OsNOMT/RdOMT10 showed strong dimethylation activity towards diverse flavonoids and were therefore used in the site-selective bioconversion of flavonoids into dimethoxyflavonoids. The <i>E. coli</i> cells bearing OsNOMT/ObFOMT5 successfully converted flavonoids into 7,4'-dimethoxyflavonoids. The engineered <i>E. coli</i> expressing OsNOMT/RdOMT10 converted flavonoids into 3,7-dimethoxyflavonoids. This result indicates that the fusion FOMTs are useful multienzyme biocatalysts for the site-selective production of dimethoxyflavonoids by one-pot bioconversion.</p></div>","PeriodicalId":467,"journal":{"name":"Applied Biological Chemistry","volume":"68 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://applbiolchem.springeropen.com/counter/pdf/10.1186/s13765-025-00983-1","citationCount":"0","resultStr":"{\"title\":\"Site-selective dimethylation of flavonoids using fusion flavonoid O-methyltransferases\",\"authors\":\"Kyungha Lee, Seong Hee Bhoo, Sang-Won Lee, Man-Ho Cho\",\"doi\":\"10.1186/s13765-025-00983-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Flavonoids are often decorated with methyl groups, which are catalyzed by flavonoid <i>O</i>-methyltransferases (FOMTs). Most FOMTs methylate flavonoids in a regiospecific manner. Because of the regiospecific nature of FOMTs, the synthesis of polymethoxyflavonoids is accomplished by multiple <i>O</i>-methylation steps. The multistep synthesis of dimethoxyflavonoids can be efficiently performed by a one-pot procedure using a multienzyme biocatalyst. For the one-pot production of dimethoxyflavonoids, fusion FOMTs were generated by the combination of two different regiospecific FOMTs. RdOMT10 (flavonoid 3-OMT), OsNOMT (flavonoid 7-OMT), and ObFOMT5 (flavonoid 4'-OMT) were used in the FOMT fusion. The fusion FOMTs (OsNOMT/ObFOMT5, OsNOMT/RdOMT10, and ObFOMT5/RdOMT10) were heterologously expressed in <i>Escherichia coli</i>. Activity assays of the recombinant fusion FOMTs demonstrated that OsNOMT/ObFOMT5, OsNOMT/RdOMT10, and ObFOMT5/RdOMT10 catalyze 7/4'-<i>O</i>-methylations, 7/3-<i>O</i>-methylations, and 4'/3-<i>O</i>-methylations of flavonoids, respectively. OsNOMT/ObFOMT5 and OsNOMT/RdOMT10 showed strong dimethylation activity towards diverse flavonoids and were therefore used in the site-selective bioconversion of flavonoids into dimethoxyflavonoids. The <i>E. coli</i> cells bearing OsNOMT/ObFOMT5 successfully converted flavonoids into 7,4'-dimethoxyflavonoids. The engineered <i>E. coli</i> expressing OsNOMT/RdOMT10 converted flavonoids into 3,7-dimethoxyflavonoids. This result indicates that the fusion FOMTs are useful multienzyme biocatalysts for the site-selective production of dimethoxyflavonoids by one-pot bioconversion.</p></div>\",\"PeriodicalId\":467,\"journal\":{\"name\":\"Applied Biological Chemistry\",\"volume\":\"68 1\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-02-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://applbiolchem.springeropen.com/counter/pdf/10.1186/s13765-025-00983-1\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Biological Chemistry\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s13765-025-00983-1\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Biological Chemistry","FirstCategoryId":"97","ListUrlMain":"https://link.springer.com/article/10.1186/s13765-025-00983-1","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
类黄酮通常被甲基修饰,甲基修饰是由类黄酮o -甲基转移酶(FOMTs)催化的。大多数fmt以特定区域的方式甲基化黄酮类化合物。由于fmt的区域特异性,多甲氧基类黄酮的合成是通过多个o -甲基化步骤完成的。在多酶生物催化剂的催化下,二甲氧基黄酮类化合物的多步合成可在一锅法中高效完成。对于一锅制二甲氧基黄酮类化合物,两种不同区域特异性的fmt结合产生融合fmt。采用RdOMT10(类黄酮3-OMT)、OsNOMT(类黄酮7-OMT)和ObFOMT5(类黄酮4'-OMT)进行fmt融合。融合fts (OsNOMT/ obdomt5、OsNOMT/RdOMT10和OsNOMT/RdOMT10)在大肠杆菌中异种表达。重组融合fmt的活性分析表明,OsNOMT/ obdomt5、OsNOMT/RdOMT10和OsNOMT/RdOMT10分别催化黄酮类化合物的7/4′- o -甲基化、7/3- o -甲基化和4′/3- o -甲基化。OsNOMT/ObFOMT5和OsNOMT/RdOMT10对多种黄酮类化合物表现出较强的二甲基化活性,因此可用于黄酮类化合物的位点选择性生物转化为二甲氧基黄酮类化合物。携带OsNOMT/ObFOMT5的大肠杆菌细胞成功地将类黄酮转化为7,4'-二甲氧基类黄酮。表达OsNOMT/RdOMT10的工程大肠杆菌将类黄酮转化为3,7-二甲氧基类黄酮。这一结果表明,融合fmt是一锅法选择性生产二甲氧基黄酮类化合物的有效多酶生物催化剂。
Site-selective dimethylation of flavonoids using fusion flavonoid O-methyltransferases
Flavonoids are often decorated with methyl groups, which are catalyzed by flavonoid O-methyltransferases (FOMTs). Most FOMTs methylate flavonoids in a regiospecific manner. Because of the regiospecific nature of FOMTs, the synthesis of polymethoxyflavonoids is accomplished by multiple O-methylation steps. The multistep synthesis of dimethoxyflavonoids can be efficiently performed by a one-pot procedure using a multienzyme biocatalyst. For the one-pot production of dimethoxyflavonoids, fusion FOMTs were generated by the combination of two different regiospecific FOMTs. RdOMT10 (flavonoid 3-OMT), OsNOMT (flavonoid 7-OMT), and ObFOMT5 (flavonoid 4'-OMT) were used in the FOMT fusion. The fusion FOMTs (OsNOMT/ObFOMT5, OsNOMT/RdOMT10, and ObFOMT5/RdOMT10) were heterologously expressed in Escherichia coli. Activity assays of the recombinant fusion FOMTs demonstrated that OsNOMT/ObFOMT5, OsNOMT/RdOMT10, and ObFOMT5/RdOMT10 catalyze 7/4'-O-methylations, 7/3-O-methylations, and 4'/3-O-methylations of flavonoids, respectively. OsNOMT/ObFOMT5 and OsNOMT/RdOMT10 showed strong dimethylation activity towards diverse flavonoids and were therefore used in the site-selective bioconversion of flavonoids into dimethoxyflavonoids. The E. coli cells bearing OsNOMT/ObFOMT5 successfully converted flavonoids into 7,4'-dimethoxyflavonoids. The engineered E. coli expressing OsNOMT/RdOMT10 converted flavonoids into 3,7-dimethoxyflavonoids. This result indicates that the fusion FOMTs are useful multienzyme biocatalysts for the site-selective production of dimethoxyflavonoids by one-pot bioconversion.
期刊介绍:
Applied Biological Chemistry aims to promote the interchange and dissemination of scientific data among researchers in the field of agricultural and biological chemistry. The journal covers biochemistry and molecular biology, medical and biomaterial science, food science, and environmental science as applied to multidisciplinary agriculture.