韦伯数和孔位对亚临界帷幕流态的影响

IF 3.6 2区 工程技术 Q1 MECHANICS
Alessandro Della Pia
{"title":"韦伯数和孔位对亚临界帷幕流态的影响","authors":"Alessandro Della Pia","doi":"10.1016/j.ijmultiphaseflow.2025.105163","DOIUrl":null,"url":null,"abstract":"<div><div>The flow regimes of a gravitational plane liquid jet (curtain) issuing into a quiescent gaseous ambient are investigated in subcritical conditions, namely for inlet Weber number <span><math><mrow><mi>W</mi><mi>e</mi><mo>&lt;</mo><mn>1</mn></mrow></math></span>. By means of three-dimensional direct numerical simulations based on the volume-of-fluid method, steady curtain base flow solutions are obtained and excited by introducing hole perturbations, whose evolution is assessed by variation of <span><math><mrow><mi>W</mi><mi>e</mi></mrow></math></span> and <span><math><msub><mrow><mi>x</mi></mrow><mrow><mi>h</mi></mrow></msub></math></span> (i.e. the hole initial location) parameters. Depending on the combination of <span><math><mrow><mi>W</mi><mi>e</mi></mrow></math></span> and <span><math><msub><mrow><mi>x</mi></mrow><mrow><mi>h</mi></mrow></msub></math></span>, three different flow regimes are observed. In the sheet (S) regime, the hole perturbation expands in the curtain and is convected downstream, generating secondary holes washed out at the domain outflow, leaving the curtain intact. In the transient columns (TC) regime, the secondary holes expand and merge with the primary hole, generating vertical liquid ligaments (columns) expelled from the domain in finite time, leaving the curtain again in its original state. In the columns (C) regime, the curtain finally exhibits a transition from the continuous sheet shape to a discrete permanent (i.e. stationary) columns pattern. The phase diagram of the curtain flow is drawn by representing all numerical results in the parameters space <span><math><mrow><mi>W</mi><mi>e</mi></mrow></math></span>-<span><math><msub><mrow><mi>x</mi></mrow><mrow><mi>h</mi></mrow></msub></math></span>. It is found that the S, TC and C regimes are clustered into three distinct regions of the diagram by two theoretical curves, namely <span><math><mrow><msub><mrow><mi>X</mi></mrow><mrow><mi>c</mi><mi>r</mi></mrow></msub><mrow><mo>(</mo><mi>W</mi><mi>e</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><msub><mrow><mi>X</mi></mrow><mrow><mi>b</mi><mi>r</mi></mrow></msub><mrow><mo>(</mo><mi>W</mi><mi>e</mi><mo>)</mo></mrow></mrow></math></span>, where <span><math><mrow><msub><mrow><mi>X</mi></mrow><mrow><mi>c</mi><mi>r</mi></mrow></msub><mo>&gt;</mo><msub><mrow><mi>X</mi></mrow><mrow><mi>b</mi><mi>r</mi></mrow></msub></mrow></math></span>: for <span><math><mrow><msub><mrow><mi>x</mi></mrow><mrow><mi>h</mi></mrow></msub><mo>&gt;</mo><msub><mrow><mi>X</mi></mrow><mrow><mi>c</mi><mi>r</mi></mrow></msub></mrow></math></span>, the curtain is in the S regime; for <span><math><mrow><msub><mrow><mi>X</mi></mrow><mrow><mi>b</mi><mi>r</mi></mrow></msub><mo>&lt;</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>h</mi></mrow></msub><mo>&lt;</mo><msub><mrow><mi>X</mi></mrow><mrow><mi>c</mi><mi>r</mi></mrow></msub></mrow></math></span>, the TC regime is obtained; for <span><math><mrow><msub><mrow><mi>x</mi></mrow><mrow><mi>h</mi></mrow></msub><mo>&lt;</mo><msub><mrow><mi>X</mi></mrow><mrow><mi>b</mi><mi>r</mi></mrow></msub></mrow></math></span>, the curtain experiences a permanent rupture migrating to the C regime. The curve <span><math><mrow><msub><mrow><mi>X</mi></mrow><mrow><mi>c</mi><mi>r</mi></mrow></msub><mrow><mo>(</mo><mi>W</mi><mi>e</mi><mo>)</mo></mrow></mrow></math></span> represents the celebrated critical station, namely the streamwise location along the curtain where the local Weber number is equal to unity, and was derived in previous literature within the simplified inviscid one-dimensional flow assumption. The curve <span><math><mrow><msub><mrow><mi>X</mi></mrow><mrow><mi>b</mi><mi>r</mi></mrow></msub><mrow><mo>(</mo><mi>W</mi><mi>e</mi><mo>)</mo></mrow></mrow></math></span> is here denoted as the breakup station, since for <span><math><mrow><msub><mrow><mi>x</mi></mrow><mrow><mi>h</mi></mrow></msub><mo>&lt;</mo><msub><mrow><mi>X</mi></mrow><mrow><mi>b</mi><mi>r</mi></mrow></msub></mrow></math></span> the curtain undergoes permanent rupture, driven by the upstream retraction of the hole due to surface tension. It is found that <span><math><mrow><msub><mrow><mi>X</mi></mrow><mrow><mi>b</mi><mi>r</mi></mrow></msub><mo>→</mo><mn>0</mn></mrow></math></span> for <span><math><mrow><mi>W</mi><mi>e</mi><mo>→</mo><mi>W</mi><msub><mrow><mi>e</mi></mrow><mrow><mi>b</mi><mi>r</mi></mrow></msub></mrow></math></span>. Therefore, the breakup Weber number found here (<span><math><mrow><mi>W</mi><msub><mrow><mi>e</mi></mrow><mrow><mi>b</mi><mi>r</mi></mrow></msub><mo>≈</mo><mn>0</mn><mo>.</mo><mn>58</mn></mrow></math></span>) represents the maximum <span><math><mrow><mi>W</mi><mi>e</mi></mrow></math></span> at which the curtain transition from the sheet (S) to the columns (C) regime can be observed. The classifier role played by the theoretical 1D curves in clustering the numerical 3D phase diagram provides a connection between simplified linear one-dimensional theories and fully three-dimensional simulations of curtain flows.</div></div>","PeriodicalId":339,"journal":{"name":"International Journal of Multiphase Flow","volume":"186 ","pages":"Article 105163"},"PeriodicalIF":3.6000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of Weber number and hole location on subcritical curtain flow regimes\",\"authors\":\"Alessandro Della Pia\",\"doi\":\"10.1016/j.ijmultiphaseflow.2025.105163\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The flow regimes of a gravitational plane liquid jet (curtain) issuing into a quiescent gaseous ambient are investigated in subcritical conditions, namely for inlet Weber number <span><math><mrow><mi>W</mi><mi>e</mi><mo>&lt;</mo><mn>1</mn></mrow></math></span>. By means of three-dimensional direct numerical simulations based on the volume-of-fluid method, steady curtain base flow solutions are obtained and excited by introducing hole perturbations, whose evolution is assessed by variation of <span><math><mrow><mi>W</mi><mi>e</mi></mrow></math></span> and <span><math><msub><mrow><mi>x</mi></mrow><mrow><mi>h</mi></mrow></msub></math></span> (i.e. the hole initial location) parameters. Depending on the combination of <span><math><mrow><mi>W</mi><mi>e</mi></mrow></math></span> and <span><math><msub><mrow><mi>x</mi></mrow><mrow><mi>h</mi></mrow></msub></math></span>, three different flow regimes are observed. In the sheet (S) regime, the hole perturbation expands in the curtain and is convected downstream, generating secondary holes washed out at the domain outflow, leaving the curtain intact. In the transient columns (TC) regime, the secondary holes expand and merge with the primary hole, generating vertical liquid ligaments (columns) expelled from the domain in finite time, leaving the curtain again in its original state. In the columns (C) regime, the curtain finally exhibits a transition from the continuous sheet shape to a discrete permanent (i.e. stationary) columns pattern. The phase diagram of the curtain flow is drawn by representing all numerical results in the parameters space <span><math><mrow><mi>W</mi><mi>e</mi></mrow></math></span>-<span><math><msub><mrow><mi>x</mi></mrow><mrow><mi>h</mi></mrow></msub></math></span>. It is found that the S, TC and C regimes are clustered into three distinct regions of the diagram by two theoretical curves, namely <span><math><mrow><msub><mrow><mi>X</mi></mrow><mrow><mi>c</mi><mi>r</mi></mrow></msub><mrow><mo>(</mo><mi>W</mi><mi>e</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><msub><mrow><mi>X</mi></mrow><mrow><mi>b</mi><mi>r</mi></mrow></msub><mrow><mo>(</mo><mi>W</mi><mi>e</mi><mo>)</mo></mrow></mrow></math></span>, where <span><math><mrow><msub><mrow><mi>X</mi></mrow><mrow><mi>c</mi><mi>r</mi></mrow></msub><mo>&gt;</mo><msub><mrow><mi>X</mi></mrow><mrow><mi>b</mi><mi>r</mi></mrow></msub></mrow></math></span>: for <span><math><mrow><msub><mrow><mi>x</mi></mrow><mrow><mi>h</mi></mrow></msub><mo>&gt;</mo><msub><mrow><mi>X</mi></mrow><mrow><mi>c</mi><mi>r</mi></mrow></msub></mrow></math></span>, the curtain is in the S regime; for <span><math><mrow><msub><mrow><mi>X</mi></mrow><mrow><mi>b</mi><mi>r</mi></mrow></msub><mo>&lt;</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>h</mi></mrow></msub><mo>&lt;</mo><msub><mrow><mi>X</mi></mrow><mrow><mi>c</mi><mi>r</mi></mrow></msub></mrow></math></span>, the TC regime is obtained; for <span><math><mrow><msub><mrow><mi>x</mi></mrow><mrow><mi>h</mi></mrow></msub><mo>&lt;</mo><msub><mrow><mi>X</mi></mrow><mrow><mi>b</mi><mi>r</mi></mrow></msub></mrow></math></span>, the curtain experiences a permanent rupture migrating to the C regime. The curve <span><math><mrow><msub><mrow><mi>X</mi></mrow><mrow><mi>c</mi><mi>r</mi></mrow></msub><mrow><mo>(</mo><mi>W</mi><mi>e</mi><mo>)</mo></mrow></mrow></math></span> represents the celebrated critical station, namely the streamwise location along the curtain where the local Weber number is equal to unity, and was derived in previous literature within the simplified inviscid one-dimensional flow assumption. The curve <span><math><mrow><msub><mrow><mi>X</mi></mrow><mrow><mi>b</mi><mi>r</mi></mrow></msub><mrow><mo>(</mo><mi>W</mi><mi>e</mi><mo>)</mo></mrow></mrow></math></span> is here denoted as the breakup station, since for <span><math><mrow><msub><mrow><mi>x</mi></mrow><mrow><mi>h</mi></mrow></msub><mo>&lt;</mo><msub><mrow><mi>X</mi></mrow><mrow><mi>b</mi><mi>r</mi></mrow></msub></mrow></math></span> the curtain undergoes permanent rupture, driven by the upstream retraction of the hole due to surface tension. It is found that <span><math><mrow><msub><mrow><mi>X</mi></mrow><mrow><mi>b</mi><mi>r</mi></mrow></msub><mo>→</mo><mn>0</mn></mrow></math></span> for <span><math><mrow><mi>W</mi><mi>e</mi><mo>→</mo><mi>W</mi><msub><mrow><mi>e</mi></mrow><mrow><mi>b</mi><mi>r</mi></mrow></msub></mrow></math></span>. Therefore, the breakup Weber number found here (<span><math><mrow><mi>W</mi><msub><mrow><mi>e</mi></mrow><mrow><mi>b</mi><mi>r</mi></mrow></msub><mo>≈</mo><mn>0</mn><mo>.</mo><mn>58</mn></mrow></math></span>) represents the maximum <span><math><mrow><mi>W</mi><mi>e</mi></mrow></math></span> at which the curtain transition from the sheet (S) to the columns (C) regime can be observed. The classifier role played by the theoretical 1D curves in clustering the numerical 3D phase diagram provides a connection between simplified linear one-dimensional theories and fully three-dimensional simulations of curtain flows.</div></div>\",\"PeriodicalId\":339,\"journal\":{\"name\":\"International Journal of Multiphase Flow\",\"volume\":\"186 \",\"pages\":\"Article 105163\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-02-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Multiphase Flow\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0301932225000412\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Multiphase Flow","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0301932225000412","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

研究了在亚临界条件下,即进口韦伯数为We<;1时,重力平面液体射流(幕)进入静止气体环境的流动形式。采用基于流体体积法的三维直接数值模拟方法,通过引入孔洞扰动,得到帷幕基流的稳态解,并通过孔洞初始位置参数We和xh的变化来评价其演化。根据We和xh的组合,可以观察到三种不同的流动形式。在片状(S)状态下,孔洞扰动在帷幕中扩展并向下游对流,在区域流出处产生二次孔洞,使帷幕保持完整。在瞬态柱(TC)状态下,二次孔扩展并与主孔合并,在有限时间内产生垂直的液体韧带(柱),从区域中排出,使幕再次处于原始状态。在柱状(C)结构中,帷幕最终呈现出从连续的片状形状到离散的永久(即静止)柱状图案的过渡。将所有数值结果表示为参数空间We-xh中的帷幕流相图。通过两条理论曲线,即Xcr(We)和Xbr(We),发现S、TC和C区聚为图中的三个不同区域,其中Xcr>;Xbr:对于xh>;Xcr,幕处于S区;对于Xbr<;xh<Xcr,得到TC态;对于xh<;Xbr,幕经历永久破裂迁移到C区。曲线Xcr(We)表示著名的临界站,即沿帷幕的流向位置,局部韦伯数等于单位,在先前的文献中是在简化的无粘一维流动假设下推导出来的。曲线Xbr(We)在这里表示破裂站,因为对于xh<;Xbr,由于表面张力导致孔的上游收缩,幕幕经历了永久性破裂。我们发现,对于We→Webr, Xbr→0。因此,这里发现的破裂韦伯数(Webr≈0.58)代表了可以观察到从片状(S)向柱状(C)过渡的最大We。理论一维曲线在数值三维相图聚类中所起的分类器作用,为简化的线性一维理论和完全三维的幕流模拟提供了联系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Effects of Weber number and hole location on subcritical curtain flow regimes

Effects of Weber number and hole location on subcritical curtain flow regimes
The flow regimes of a gravitational plane liquid jet (curtain) issuing into a quiescent gaseous ambient are investigated in subcritical conditions, namely for inlet Weber number We<1. By means of three-dimensional direct numerical simulations based on the volume-of-fluid method, steady curtain base flow solutions are obtained and excited by introducing hole perturbations, whose evolution is assessed by variation of We and xh (i.e. the hole initial location) parameters. Depending on the combination of We and xh, three different flow regimes are observed. In the sheet (S) regime, the hole perturbation expands in the curtain and is convected downstream, generating secondary holes washed out at the domain outflow, leaving the curtain intact. In the transient columns (TC) regime, the secondary holes expand and merge with the primary hole, generating vertical liquid ligaments (columns) expelled from the domain in finite time, leaving the curtain again in its original state. In the columns (C) regime, the curtain finally exhibits a transition from the continuous sheet shape to a discrete permanent (i.e. stationary) columns pattern. The phase diagram of the curtain flow is drawn by representing all numerical results in the parameters space We-xh. It is found that the S, TC and C regimes are clustered into three distinct regions of the diagram by two theoretical curves, namely Xcr(We) and Xbr(We), where Xcr>Xbr: for xh>Xcr, the curtain is in the S regime; for Xbr<xh<Xcr, the TC regime is obtained; for xh<Xbr, the curtain experiences a permanent rupture migrating to the C regime. The curve Xcr(We) represents the celebrated critical station, namely the streamwise location along the curtain where the local Weber number is equal to unity, and was derived in previous literature within the simplified inviscid one-dimensional flow assumption. The curve Xbr(We) is here denoted as the breakup station, since for xh<Xbr the curtain undergoes permanent rupture, driven by the upstream retraction of the hole due to surface tension. It is found that Xbr0 for WeWebr. Therefore, the breakup Weber number found here (Webr0.58) represents the maximum We at which the curtain transition from the sheet (S) to the columns (C) regime can be observed. The classifier role played by the theoretical 1D curves in clustering the numerical 3D phase diagram provides a connection between simplified linear one-dimensional theories and fully three-dimensional simulations of curtain flows.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.30
自引率
10.50%
发文量
244
审稿时长
4 months
期刊介绍: The International Journal of Multiphase Flow publishes analytical, numerical and experimental articles of lasting interest. The scope of the journal includes all aspects of mass, momentum and energy exchange phenomena among different phases such as occur in disperse flows, gas–liquid and liquid–liquid flows, flows in porous media, boiling, granular flows and others. The journal publishes full papers, brief communications and conference announcements.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信