采用 Ru 晶格接枝的 P 块元素调制 1 T 相 MoS2,用于高性能锂离子电池

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Peng Wang, Danyang Zhao, Peng Zhang, Xiaobin Hui, Zhiwei Zhang, Rutao Wang, Chengxiang Wang, Xiaoli Ge, Xiaojing Liu, Yuguang C. Li, Longwei Yin
{"title":"采用 Ru 晶格接枝的 P 块元素调制 1 T 相 MoS2,用于高性能锂离子电池","authors":"Peng Wang, Danyang Zhao, Peng Zhang, Xiaobin Hui, Zhiwei Zhang, Rutao Wang, Chengxiang Wang, Xiaoli Ge, Xiaojing Liu, Yuguang C. Li, Longwei Yin","doi":"10.1038/s41467-024-55073-5","DOIUrl":null,"url":null,"abstract":"<p>The metallic phase MoS<sub>2</sub> (1T-MoS<sub>2</sub>) supported metal-nanocatalyst is an appealing material system for accelerating the redox kinetics of non-aqueous Li | |O<sub>2</sub> batteries. However, the drawbacks associated with the surface orbital steric effect and the internal electron coupling results in a detrimental effect for the stability of 1T-MoS<sub>2</sub>, especially for the interface charge transfer. This makes it difficult to incorporate guest metal nanoparticles without compromising the 1 T phase support. To circumvent these issues, here we propose a p-block element (In-O) doping strategy to stabilize the 1 T phase MoS<sub>2</sub> by moderating the surface orbital steric effect and strengthening the internal chemical bonding, and thus for the epitaxial Ru nanocatalyst graft on the stabilized 1T-MoS<sub>2</sub> for Li | |O<sub>2</sub> batteries. The experimental and theoretical analyzes indicate that the In-O-MoS<sub>2</sub>@Ru enhances the O<sub>2</sub> dissociation and facilitates the adsorption of LiO<sub>2</sub> intermediates. This effect promotes the growth of weakly crystalline Li<sub>2</sub>O<sub>2</sub> films during oxygen reduction reaction, which can be more easily decomposed during the oxygen evolution reaction, thereby enhancing the bifunctional-catalytic kinetics. When employed at the positive electrode for non-aqueous Li | |O<sub>2</sub> batteries, In-O-MoS<sub>2</sub>@Ru shows an overpotential of 0.37 V and a cycling life of 284 cycles at 200 mA g<sup>−1</sup> with a final discharge specific capacity of 1000 mAh g<sup>−1</sup> at 25 °C.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"11 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"P-block element modulated 1 T phase MoS2 with Ru lattice grafting for high-performance Li | |O2 batteries\",\"authors\":\"Peng Wang, Danyang Zhao, Peng Zhang, Xiaobin Hui, Zhiwei Zhang, Rutao Wang, Chengxiang Wang, Xiaoli Ge, Xiaojing Liu, Yuguang C. Li, Longwei Yin\",\"doi\":\"10.1038/s41467-024-55073-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The metallic phase MoS<sub>2</sub> (1T-MoS<sub>2</sub>) supported metal-nanocatalyst is an appealing material system for accelerating the redox kinetics of non-aqueous Li | |O<sub>2</sub> batteries. However, the drawbacks associated with the surface orbital steric effect and the internal electron coupling results in a detrimental effect for the stability of 1T-MoS<sub>2</sub>, especially for the interface charge transfer. This makes it difficult to incorporate guest metal nanoparticles without compromising the 1 T phase support. To circumvent these issues, here we propose a p-block element (In-O) doping strategy to stabilize the 1 T phase MoS<sub>2</sub> by moderating the surface orbital steric effect and strengthening the internal chemical bonding, and thus for the epitaxial Ru nanocatalyst graft on the stabilized 1T-MoS<sub>2</sub> for Li | |O<sub>2</sub> batteries. The experimental and theoretical analyzes indicate that the In-O-MoS<sub>2</sub>@Ru enhances the O<sub>2</sub> dissociation and facilitates the adsorption of LiO<sub>2</sub> intermediates. This effect promotes the growth of weakly crystalline Li<sub>2</sub>O<sub>2</sub> films during oxygen reduction reaction, which can be more easily decomposed during the oxygen evolution reaction, thereby enhancing the bifunctional-catalytic kinetics. When employed at the positive electrode for non-aqueous Li | |O<sub>2</sub> batteries, In-O-MoS<sub>2</sub>@Ru shows an overpotential of 0.37 V and a cycling life of 284 cycles at 200 mA g<sup>−1</sup> with a final discharge specific capacity of 1000 mAh g<sup>−1</sup> at 25 °C.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":14.7000,\"publicationDate\":\"2025-02-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-024-55073-5\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-55073-5","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。

P-block element modulated 1 T phase MoS2 with Ru lattice grafting for high-performance Li | |O2 batteries

P-block element modulated 1 T phase MoS2 with Ru lattice grafting for high-performance Li | |O2 batteries

The metallic phase MoS2 (1T-MoS2) supported metal-nanocatalyst is an appealing material system for accelerating the redox kinetics of non-aqueous Li | |O2 batteries. However, the drawbacks associated with the surface orbital steric effect and the internal electron coupling results in a detrimental effect for the stability of 1T-MoS2, especially for the interface charge transfer. This makes it difficult to incorporate guest metal nanoparticles without compromising the 1 T phase support. To circumvent these issues, here we propose a p-block element (In-O) doping strategy to stabilize the 1 T phase MoS2 by moderating the surface orbital steric effect and strengthening the internal chemical bonding, and thus for the epitaxial Ru nanocatalyst graft on the stabilized 1T-MoS2 for Li | |O2 batteries. The experimental and theoretical analyzes indicate that the In-O-MoS2@Ru enhances the O2 dissociation and facilitates the adsorption of LiO2 intermediates. This effect promotes the growth of weakly crystalline Li2O2 films during oxygen reduction reaction, which can be more easily decomposed during the oxygen evolution reaction, thereby enhancing the bifunctional-catalytic kinetics. When employed at the positive electrode for non-aqueous Li | |O2 batteries, In-O-MoS2@Ru shows an overpotential of 0.37 V and a cycling life of 284 cycles at 200 mA g−1 with a final discharge specific capacity of 1000 mAh g−1 at 25 °C.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信