降水水汽空间增强内插垂直调整模型

IF 3.9 2区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS
Hao Yang, Vagner Ferreira, Xiufeng He, Wei Zhan, Xiaolei Wang, Shengyue Ji
{"title":"降水水汽空间增强内插垂直调整模型","authors":"Hao Yang, Vagner Ferreira, Xiufeng He, Wei Zhan, Xiaolei Wang, Shengyue Ji","doi":"10.1007/s00190-025-01936-8","DOIUrl":null,"url":null,"abstract":"<p>As a critical parameter in meteorological monitoring, precipitable water vapor (PWV) is widely used in short-term extreme weather forecasting and long-term climate change research. However, as PWV exhibits significant vertical attenuation, especially within 2 km, achieving accurate vertical interpolation is essential for comparisons and fusion across different measurement techniques, such as sampling water vapor at different heights. PWV vertical adjustment relies only on the empirical or time-varying lapse rate models (e.g., GPWV-H). The non-uniform vertical distribution of PWV and the uncertain variation trend in the low-latitude region still limit the accuracy. To address these issues, we propose the Spatially enhanced Vertical Adjustment Model for PWV (SPWV-H), taking into account the non-uniform distribution in the vertical direction based on the fifth-generation European Centre for Medium-Range Weather Forecasts Atmospheric Reanalysis (ERA5) products. The assessment, validated against the ERA5 benchmark, highlights the SPWV-H model’s superior performance with an RMSE of 1 mm and a bias of 0.03 mm, especially pronounced in the low-latitude region. Compared to global radiosonde datasets, the SPWV-H model achieves notable reductions in RMSE of 12%, 11%, and 18% when evaluated against the EPWV-H, GPWV-H, and GPT3-1 models, respectively. In spatial interpolation, the SPWV-H model achieves an RMSE of 1.22 mm, indicating an improvement of 10%, 9%, and 14% compared to the EPWV-H, GPWV-H, and GPT3-1 models, respectively. Therefore, the SPWV-H model can provide a reliable service for multi-source PWV fusion and real-time PWV monitoring by GNSS.</p>","PeriodicalId":54822,"journal":{"name":"Journal of Geodesy","volume":"142 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spatially enhanced interpolating vertical adjustment model for precipitable water vapor\",\"authors\":\"Hao Yang, Vagner Ferreira, Xiufeng He, Wei Zhan, Xiaolei Wang, Shengyue Ji\",\"doi\":\"10.1007/s00190-025-01936-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>As a critical parameter in meteorological monitoring, precipitable water vapor (PWV) is widely used in short-term extreme weather forecasting and long-term climate change research. However, as PWV exhibits significant vertical attenuation, especially within 2 km, achieving accurate vertical interpolation is essential for comparisons and fusion across different measurement techniques, such as sampling water vapor at different heights. PWV vertical adjustment relies only on the empirical or time-varying lapse rate models (e.g., GPWV-H). The non-uniform vertical distribution of PWV and the uncertain variation trend in the low-latitude region still limit the accuracy. To address these issues, we propose the Spatially enhanced Vertical Adjustment Model for PWV (SPWV-H), taking into account the non-uniform distribution in the vertical direction based on the fifth-generation European Centre for Medium-Range Weather Forecasts Atmospheric Reanalysis (ERA5) products. The assessment, validated against the ERA5 benchmark, highlights the SPWV-H model’s superior performance with an RMSE of 1 mm and a bias of 0.03 mm, especially pronounced in the low-latitude region. Compared to global radiosonde datasets, the SPWV-H model achieves notable reductions in RMSE of 12%, 11%, and 18% when evaluated against the EPWV-H, GPWV-H, and GPT3-1 models, respectively. In spatial interpolation, the SPWV-H model achieves an RMSE of 1.22 mm, indicating an improvement of 10%, 9%, and 14% compared to the EPWV-H, GPWV-H, and GPT3-1 models, respectively. Therefore, the SPWV-H model can provide a reliable service for multi-source PWV fusion and real-time PWV monitoring by GNSS.</p>\",\"PeriodicalId\":54822,\"journal\":{\"name\":\"Journal of Geodesy\",\"volume\":\"142 1\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-02-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geodesy\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1007/s00190-025-01936-8\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geodesy","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s00190-025-01936-8","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spatially enhanced interpolating vertical adjustment model for precipitable water vapor

As a critical parameter in meteorological monitoring, precipitable water vapor (PWV) is widely used in short-term extreme weather forecasting and long-term climate change research. However, as PWV exhibits significant vertical attenuation, especially within 2 km, achieving accurate vertical interpolation is essential for comparisons and fusion across different measurement techniques, such as sampling water vapor at different heights. PWV vertical adjustment relies only on the empirical or time-varying lapse rate models (e.g., GPWV-H). The non-uniform vertical distribution of PWV and the uncertain variation trend in the low-latitude region still limit the accuracy. To address these issues, we propose the Spatially enhanced Vertical Adjustment Model for PWV (SPWV-H), taking into account the non-uniform distribution in the vertical direction based on the fifth-generation European Centre for Medium-Range Weather Forecasts Atmospheric Reanalysis (ERA5) products. The assessment, validated against the ERA5 benchmark, highlights the SPWV-H model’s superior performance with an RMSE of 1 mm and a bias of 0.03 mm, especially pronounced in the low-latitude region. Compared to global radiosonde datasets, the SPWV-H model achieves notable reductions in RMSE of 12%, 11%, and 18% when evaluated against the EPWV-H, GPWV-H, and GPT3-1 models, respectively. In spatial interpolation, the SPWV-H model achieves an RMSE of 1.22 mm, indicating an improvement of 10%, 9%, and 14% compared to the EPWV-H, GPWV-H, and GPT3-1 models, respectively. Therefore, the SPWV-H model can provide a reliable service for multi-source PWV fusion and real-time PWV monitoring by GNSS.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Geodesy
Journal of Geodesy 地学-地球化学与地球物理
CiteScore
8.60
自引率
9.10%
发文量
85
审稿时长
9 months
期刊介绍: The Journal of Geodesy is an international journal concerned with the study of scientific problems of geodesy and related interdisciplinary sciences. Peer-reviewed papers are published on theoretical or modeling studies, and on results of experiments and interpretations. Besides original research papers, the journal includes commissioned review papers on topical subjects and special issues arising from chosen scientific symposia or workshops. The journal covers the whole range of geodetic science and reports on theoretical and applied studies in research areas such as: -Positioning -Reference frame -Geodetic networks -Modeling and quality control -Space geodesy -Remote sensing -Gravity fields -Geodynamics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信