Rodrigo Del Moral-González, Helena Gómez-Adorno, Orlando Ramos-Flores
{"title":"临床记录中标记实体的生成式llm的比较分析。","authors":"Rodrigo Del Moral-González, Helena Gómez-Adorno, Orlando Ramos-Flores","doi":"10.1186/s44342-024-00036-x","DOIUrl":null,"url":null,"abstract":"<p><p>This paper evaluates and compares different fine-tuned variations of generative large language models (LLM) in the zero-shot named entity recognition (NER) task for the clinical domain. As part of the 8th Biomedical Linked Annotation Hackathon, we examined Llama 2 and Mistral models, including base versions and those that have been fine-tuned for code, chat, and instruction-following tasks. We assess both the number of correctly identified entities and the models' ability to retrieve entities in structured formats. We used a publicly available set of clinical cases labeled with mentions of diseases, symptoms, and medical procedures for the evaluation. Results show that instruction fine-tuned models perform better than chat fine-tuned and base models in recognizing entities. It is also shown that models perform better when simple output structures are requested.</p>","PeriodicalId":94288,"journal":{"name":"Genomics & informatics","volume":"23 1","pages":"3"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11804004/pdf/","citationCount":"0","resultStr":"{\"title\":\"Comparative analysis of generative LLMs for labeling entities in clinical notes.\",\"authors\":\"Rodrigo Del Moral-González, Helena Gómez-Adorno, Orlando Ramos-Flores\",\"doi\":\"10.1186/s44342-024-00036-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This paper evaluates and compares different fine-tuned variations of generative large language models (LLM) in the zero-shot named entity recognition (NER) task for the clinical domain. As part of the 8th Biomedical Linked Annotation Hackathon, we examined Llama 2 and Mistral models, including base versions and those that have been fine-tuned for code, chat, and instruction-following tasks. We assess both the number of correctly identified entities and the models' ability to retrieve entities in structured formats. We used a publicly available set of clinical cases labeled with mentions of diseases, symptoms, and medical procedures for the evaluation. Results show that instruction fine-tuned models perform better than chat fine-tuned and base models in recognizing entities. It is also shown that models perform better when simple output structures are requested.</p>\",\"PeriodicalId\":94288,\"journal\":{\"name\":\"Genomics & informatics\",\"volume\":\"23 1\",\"pages\":\"3\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-02-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11804004/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genomics & informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s44342-024-00036-x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genomics & informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s44342-024-00036-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Comparative analysis of generative LLMs for labeling entities in clinical notes.
This paper evaluates and compares different fine-tuned variations of generative large language models (LLM) in the zero-shot named entity recognition (NER) task for the clinical domain. As part of the 8th Biomedical Linked Annotation Hackathon, we examined Llama 2 and Mistral models, including base versions and those that have been fine-tuned for code, chat, and instruction-following tasks. We assess both the number of correctly identified entities and the models' ability to retrieve entities in structured formats. We used a publicly available set of clinical cases labeled with mentions of diseases, symptoms, and medical procedures for the evaluation. Results show that instruction fine-tuned models perform better than chat fine-tuned and base models in recognizing entities. It is also shown that models perform better when simple output structures are requested.