临床记录中标记实体的生成式llm的比较分析。

Rodrigo Del Moral-González, Helena Gómez-Adorno, Orlando Ramos-Flores
{"title":"临床记录中标记实体的生成式llm的比较分析。","authors":"Rodrigo Del Moral-González, Helena Gómez-Adorno, Orlando Ramos-Flores","doi":"10.1186/s44342-024-00036-x","DOIUrl":null,"url":null,"abstract":"<p><p>This paper evaluates and compares different fine-tuned variations of generative large language models (LLM) in the zero-shot named entity recognition (NER) task for the clinical domain. As part of the 8th Biomedical Linked Annotation Hackathon, we examined Llama 2 and Mistral models, including base versions and those that have been fine-tuned for code, chat, and instruction-following tasks. We assess both the number of correctly identified entities and the models' ability to retrieve entities in structured formats. We used a publicly available set of clinical cases labeled with mentions of diseases, symptoms, and medical procedures for the evaluation. Results show that instruction fine-tuned models perform better than chat fine-tuned and base models in recognizing entities. It is also shown that models perform better when simple output structures are requested.</p>","PeriodicalId":94288,"journal":{"name":"Genomics & informatics","volume":"23 1","pages":"3"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11804004/pdf/","citationCount":"0","resultStr":"{\"title\":\"Comparative analysis of generative LLMs for labeling entities in clinical notes.\",\"authors\":\"Rodrigo Del Moral-González, Helena Gómez-Adorno, Orlando Ramos-Flores\",\"doi\":\"10.1186/s44342-024-00036-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This paper evaluates and compares different fine-tuned variations of generative large language models (LLM) in the zero-shot named entity recognition (NER) task for the clinical domain. As part of the 8th Biomedical Linked Annotation Hackathon, we examined Llama 2 and Mistral models, including base versions and those that have been fine-tuned for code, chat, and instruction-following tasks. We assess both the number of correctly identified entities and the models' ability to retrieve entities in structured formats. We used a publicly available set of clinical cases labeled with mentions of diseases, symptoms, and medical procedures for the evaluation. Results show that instruction fine-tuned models perform better than chat fine-tuned and base models in recognizing entities. It is also shown that models perform better when simple output structures are requested.</p>\",\"PeriodicalId\":94288,\"journal\":{\"name\":\"Genomics & informatics\",\"volume\":\"23 1\",\"pages\":\"3\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-02-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11804004/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genomics & informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s44342-024-00036-x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genomics & informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s44342-024-00036-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文评估和比较了临床领域零射击命名实体识别(NER)任务中生成大语言模型(LLM)的不同微调变化。作为第八届生物医学链接注释黑客马拉松的一部分,我们检查了Llama 2和Mistral模型,包括基本版本和那些为代码、聊天和指令遵循任务进行了微调的模型。我们评估了正确识别实体的数量和模型以结构化格式检索实体的能力。我们使用了一组公开的临床病例,标记了疾病、症状和医疗程序进行评估。结果表明,指令微调模型在实体识别方面优于聊天微调模型和基本模型。当要求简单的输出结构时,模型的性能更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparative analysis of generative LLMs for labeling entities in clinical notes.

This paper evaluates and compares different fine-tuned variations of generative large language models (LLM) in the zero-shot named entity recognition (NER) task for the clinical domain. As part of the 8th Biomedical Linked Annotation Hackathon, we examined Llama 2 and Mistral models, including base versions and those that have been fine-tuned for code, chat, and instruction-following tasks. We assess both the number of correctly identified entities and the models' ability to retrieve entities in structured formats. We used a publicly available set of clinical cases labeled with mentions of diseases, symptoms, and medical procedures for the evaluation. Results show that instruction fine-tuned models perform better than chat fine-tuned and base models in recognizing entities. It is also shown that models perform better when simple output structures are requested.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信