Jilan S. Ibrahim, Neamat Hanafi, Mahmoud A. Sliem, Tarek A. El-Tayeb
{"title":"偏振多色低能量光激活的聚吡咯-金纳米复合材料增强光热肿瘤消融:体内研究。","authors":"Jilan S. Ibrahim, Neamat Hanafi, Mahmoud A. Sliem, Tarek A. El-Tayeb","doi":"10.1002/jbio.202400488","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Photothermal therapy (PTT) offers a minimally invasive approach for cancer treatment, using light energy to selectively heat and destroy cancer cells. Success in PTT depends on efficient, stable, and biocompatible photothermal agents. This study investigates polypyrrole@gold nanocomposites (PPy@Au NCs) as photothermal agents combined with polarized polychromatic low-energy light (PPLEL) to target tumors and limit disease progression. In vivo experiments on Ehrlich carcinoma-bearing female Swiss albino mice demonstrated that PPy@Au NCs selectively accumulated in tumor tissue and, when activated by PPLEL, generated sufficient heat for effective tumor ablation. This approach enhanced treatment efficacy and presented a cost-effective solution due to the affordability of both the nanocomposite and light source. Histopathological analysis confirmed significant tumor reduction, suggesting that this synergistic combination offers a promising cancer treatment strategy. Findings support further research and potential clinical applications in photothermal cancer therapy.</p>\n </div>","PeriodicalId":184,"journal":{"name":"Journal of Biophotonics","volume":"18 4","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced Photothermal Tumor Ablation Using Polypyrrole-Gold Nanocomposites Activated by Polarized Polychromatic Low-Energy Light: An In Vivo Study\",\"authors\":\"Jilan S. Ibrahim, Neamat Hanafi, Mahmoud A. Sliem, Tarek A. El-Tayeb\",\"doi\":\"10.1002/jbio.202400488\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Photothermal therapy (PTT) offers a minimally invasive approach for cancer treatment, using light energy to selectively heat and destroy cancer cells. Success in PTT depends on efficient, stable, and biocompatible photothermal agents. This study investigates polypyrrole@gold nanocomposites (PPy@Au NCs) as photothermal agents combined with polarized polychromatic low-energy light (PPLEL) to target tumors and limit disease progression. In vivo experiments on Ehrlich carcinoma-bearing female Swiss albino mice demonstrated that PPy@Au NCs selectively accumulated in tumor tissue and, when activated by PPLEL, generated sufficient heat for effective tumor ablation. This approach enhanced treatment efficacy and presented a cost-effective solution due to the affordability of both the nanocomposite and light source. Histopathological analysis confirmed significant tumor reduction, suggesting that this synergistic combination offers a promising cancer treatment strategy. Findings support further research and potential clinical applications in photothermal cancer therapy.</p>\\n </div>\",\"PeriodicalId\":184,\"journal\":{\"name\":\"Journal of Biophotonics\",\"volume\":\"18 4\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-02-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biophotonics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jbio.202400488\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biophotonics","FirstCategoryId":"101","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jbio.202400488","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Enhanced Photothermal Tumor Ablation Using Polypyrrole-Gold Nanocomposites Activated by Polarized Polychromatic Low-Energy Light: An In Vivo Study
Photothermal therapy (PTT) offers a minimally invasive approach for cancer treatment, using light energy to selectively heat and destroy cancer cells. Success in PTT depends on efficient, stable, and biocompatible photothermal agents. This study investigates polypyrrole@gold nanocomposites (PPy@Au NCs) as photothermal agents combined with polarized polychromatic low-energy light (PPLEL) to target tumors and limit disease progression. In vivo experiments on Ehrlich carcinoma-bearing female Swiss albino mice demonstrated that PPy@Au NCs selectively accumulated in tumor tissue and, when activated by PPLEL, generated sufficient heat for effective tumor ablation. This approach enhanced treatment efficacy and presented a cost-effective solution due to the affordability of both the nanocomposite and light source. Histopathological analysis confirmed significant tumor reduction, suggesting that this synergistic combination offers a promising cancer treatment strategy. Findings support further research and potential clinical applications in photothermal cancer therapy.
期刊介绍:
The first international journal dedicated to publishing reviews and original articles from this exciting field, the Journal of Biophotonics covers the broad range of research on interactions between light and biological material. The journal offers a platform where the physicist communicates with the biologist and where the clinical practitioner learns about the latest tools for the diagnosis of diseases. As such, the journal is highly interdisciplinary, publishing cutting edge research in the fields of life sciences, medicine, physics, chemistry, and engineering. The coverage extends from fundamental research to specific developments, while also including the latest applications.