七归健骨汤通过激活Wnt/β-Catenin信号通路促进骨生成和骨折愈合。

Siluo Wu, Jiayang Wang, Ziheng Luo, Bifeng Li, Liangliang Xu, Liuchao Hu, Rihe Hu
{"title":"七归健骨汤通过激活Wnt/β-Catenin信号通路促进骨生成和骨折愈合。","authors":"Siluo Wu, Jiayang Wang, Ziheng Luo, Bifeng Li, Liangliang Xu, Liuchao Hu, Rihe Hu","doi":"10.2174/0115734099345441250121101413","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Qi-Gui-Jian-Gu decoction (QGJG), as a clinical empirical formula, has clinical benefits in promoting bone formation, but the underlying mechanism for its application in treating fractures has not been investigated.</p><p><strong>Methods: </strong>The potential therapeutic target and signaling pathway of QGJG for treating fractures were analyzed by network pharmacology. In vitro, we used bone marrow mesenchymal stem cells (MSCs) to evaluate osteogenic differentiation and mineralization by alizarin red staining, quantitative real-time polymerase chain reaction (qRT-PCR), western blot (WB), and immunofluorescence staining. In vivo, the 8w male SPF C57BL/6J mouse femoral fracture model was constructed, and the therapeutic effects of QGJG were evaluated.</p><p><strong>Results: </strong>By network pharmacology analysis, we found that glycogen synthase kinase 3 beta (GSK3β) was a potential therapeutic target of QGJG for treating fractures. The canonical Wnt signaling pathway was selected as the potential molecular mechanism. QGJG was confirmed to upregulate the mRNA levels of alkaline phosphatase (ALP) and bone morphogenetic protein 2 (BMP2), thereby promoting osteogenic differentiation and mineralization. Mechanistically, QGJG inhibited GSK3β while increasing p-Ser9-GSK3β to increase β-catenin protein expression and its nuclear translocation, implying the activation of the canonical Wnt signaling pathway. In vivo, QGJG administration promoted fracture healing, as demonstrated by the up-regulation of OPN and Osx, and accelerated the progression of ossification at 2 and 3 weeks after surgery.</p><p><strong>Conclusion: </strong>QGJG promotes osteogenic differentiation and fracture healing by activating the canonical Wnt pathway.</p>","PeriodicalId":93961,"journal":{"name":"Current computer-aided drug design","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Qi-Gui-Jian-Gu Decoction Accelerates Osteogenesis and Fracture Healing by Activating the Wnt/β-Catenin Signaling Pathway.\",\"authors\":\"Siluo Wu, Jiayang Wang, Ziheng Luo, Bifeng Li, Liangliang Xu, Liuchao Hu, Rihe Hu\",\"doi\":\"10.2174/0115734099345441250121101413\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Qi-Gui-Jian-Gu decoction (QGJG), as a clinical empirical formula, has clinical benefits in promoting bone formation, but the underlying mechanism for its application in treating fractures has not been investigated.</p><p><strong>Methods: </strong>The potential therapeutic target and signaling pathway of QGJG for treating fractures were analyzed by network pharmacology. In vitro, we used bone marrow mesenchymal stem cells (MSCs) to evaluate osteogenic differentiation and mineralization by alizarin red staining, quantitative real-time polymerase chain reaction (qRT-PCR), western blot (WB), and immunofluorescence staining. In vivo, the 8w male SPF C57BL/6J mouse femoral fracture model was constructed, and the therapeutic effects of QGJG were evaluated.</p><p><strong>Results: </strong>By network pharmacology analysis, we found that glycogen synthase kinase 3 beta (GSK3β) was a potential therapeutic target of QGJG for treating fractures. The canonical Wnt signaling pathway was selected as the potential molecular mechanism. QGJG was confirmed to upregulate the mRNA levels of alkaline phosphatase (ALP) and bone morphogenetic protein 2 (BMP2), thereby promoting osteogenic differentiation and mineralization. Mechanistically, QGJG inhibited GSK3β while increasing p-Ser9-GSK3β to increase β-catenin protein expression and its nuclear translocation, implying the activation of the canonical Wnt signaling pathway. In vivo, QGJG administration promoted fracture healing, as demonstrated by the up-regulation of OPN and Osx, and accelerated the progression of ossification at 2 and 3 weeks after surgery.</p><p><strong>Conclusion: </strong>QGJG promotes osteogenic differentiation and fracture healing by activating the canonical Wnt pathway.</p>\",\"PeriodicalId\":93961,\"journal\":{\"name\":\"Current computer-aided drug design\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-02-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current computer-aided drug design\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2174/0115734099345441250121101413\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current computer-aided drug design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/0115734099345441250121101413","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

背景:七归健骨汤作为临床经验方,具有促进骨形成的临床疗效,但其治疗骨折的机制尚未深入研究。方法:采用网络药理学方法分析芪芪散对骨折的潜在治疗靶点和信号通路。在体外,我们利用骨髓间充质干细胞(MSCs),通过茜素红染色、定量实时聚合酶链反应(qRT-PCR)、western blot (WB)和免疫荧光染色来评估成骨分化和矿化。在体内,建立8w雄性SPF C57BL/6J小鼠股骨骨折模型,评价芪精合剂的治疗作用。结果:通过网络药理学分析,我们发现糖原合成酶激酶3β (GSK3β)是QGJG治疗骨折的潜在靶点。我们选择了典型的Wnt信号通路作为潜在的分子机制。QGJG可上调碱性磷酸酶(ALP)和骨形态发生蛋白2 (BMP2) mRNA水平,从而促进成骨分化和矿化。从机制上讲,QGJG抑制GSK3β,同时增加p-Ser9-GSK3β,增加β-catenin蛋白的表达及其核易位,暗示激活了典型的Wnt信号通路。在体内,通过上调OPN和Osx, QGJG可以促进骨折愈合,并在术后2周和3周加速骨化进程。结论:清热参汤通过激活典型Wnt通路促进骨分化和骨折愈合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Qi-Gui-Jian-Gu Decoction Accelerates Osteogenesis and Fracture Healing by Activating the Wnt/β-Catenin Signaling Pathway.

Background: Qi-Gui-Jian-Gu decoction (QGJG), as a clinical empirical formula, has clinical benefits in promoting bone formation, but the underlying mechanism for its application in treating fractures has not been investigated.

Methods: The potential therapeutic target and signaling pathway of QGJG for treating fractures were analyzed by network pharmacology. In vitro, we used bone marrow mesenchymal stem cells (MSCs) to evaluate osteogenic differentiation and mineralization by alizarin red staining, quantitative real-time polymerase chain reaction (qRT-PCR), western blot (WB), and immunofluorescence staining. In vivo, the 8w male SPF C57BL/6J mouse femoral fracture model was constructed, and the therapeutic effects of QGJG were evaluated.

Results: By network pharmacology analysis, we found that glycogen synthase kinase 3 beta (GSK3β) was a potential therapeutic target of QGJG for treating fractures. The canonical Wnt signaling pathway was selected as the potential molecular mechanism. QGJG was confirmed to upregulate the mRNA levels of alkaline phosphatase (ALP) and bone morphogenetic protein 2 (BMP2), thereby promoting osteogenic differentiation and mineralization. Mechanistically, QGJG inhibited GSK3β while increasing p-Ser9-GSK3β to increase β-catenin protein expression and its nuclear translocation, implying the activation of the canonical Wnt signaling pathway. In vivo, QGJG administration promoted fracture healing, as demonstrated by the up-regulation of OPN and Osx, and accelerated the progression of ossification at 2 and 3 weeks after surgery.

Conclusion: QGJG promotes osteogenic differentiation and fracture healing by activating the canonical Wnt pathway.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信