Julia Linke, Thomas Rohrbach, Adam Hugh Clark, Camelia Borca, Thomas Huthwelker, Fabian Luca Buchauer, Mikkel Rykær Kraglund, Christodoulos Chatzichristodoulou, Eibhlin Meade, Julie Guehl, Mateusz Wojtas, Marco Ranocchiari, Thomas Justus Schmidt, Emiliana Fabbri
{"title":"Fe掺入Ni-MOF-74衍生析氧电催化剂在阴离子交换膜电解中的作用。","authors":"Julia Linke, Thomas Rohrbach, Adam Hugh Clark, Camelia Borca, Thomas Huthwelker, Fabian Luca Buchauer, Mikkel Rykær Kraglund, Christodoulos Chatzichristodoulou, Eibhlin Meade, Julie Guehl, Mateusz Wojtas, Marco Ranocchiari, Thomas Justus Schmidt, Emiliana Fabbri","doi":"10.1039/d4ey00250d","DOIUrl":null,"url":null,"abstract":"<p><p>The performance of Ni-based oxygen evolution reaction (OER) electrocatalysts is enhanced upon Fe incorporation into the structure during the synthesis process or electrochemical Fe uptake from the electrolyte. In light of the promising potential of metal-organic framework (MOF) electrocatalysts for water splitting, Ni-MOF-74 is used as a model catalyst to study the effect of Fe incorporation from KOH electrolyte on the electrocatalyst's OER activity and stability. The insights obtained from X-ray diffraction and operando X-ray absorption spectroscopy characterization of Ni-MOF-74 and an amorphous Ni metal organic compound (Ni-MOC*) reveal that Fe uptake enhances OER by two processes: higher Ni oxidation states and enhanced flexibility of both, the electronic state and the local structure, when cycling the potential below and above the OER onset. To demonstrate the impressive OER activity and stability in Fe containing KOH, an Ni-MOC* anode was implemented in an anion exchange membrane water electrolyzer (AEM-WE) with 3 ppm Fe containing 1 M KOH electrolyte resulting in an outstanding cell voltage of 1.7 V (at an anode potential of 1.51 V) at 60 °C and 0.5 A cm<sup>-2</sup> exceeding 130 h of stable continuous operation.</p>","PeriodicalId":72877,"journal":{"name":"EES catalysis","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11791620/pdf/","citationCount":"0","resultStr":"{\"title\":\"The role of Fe incorporation into Ni-MOF-74 derived oxygen evolution electrocatalysts for anion exchange membrane water electrolysis.\",\"authors\":\"Julia Linke, Thomas Rohrbach, Adam Hugh Clark, Camelia Borca, Thomas Huthwelker, Fabian Luca Buchauer, Mikkel Rykær Kraglund, Christodoulos Chatzichristodoulou, Eibhlin Meade, Julie Guehl, Mateusz Wojtas, Marco Ranocchiari, Thomas Justus Schmidt, Emiliana Fabbri\",\"doi\":\"10.1039/d4ey00250d\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The performance of Ni-based oxygen evolution reaction (OER) electrocatalysts is enhanced upon Fe incorporation into the structure during the synthesis process or electrochemical Fe uptake from the electrolyte. In light of the promising potential of metal-organic framework (MOF) electrocatalysts for water splitting, Ni-MOF-74 is used as a model catalyst to study the effect of Fe incorporation from KOH electrolyte on the electrocatalyst's OER activity and stability. The insights obtained from X-ray diffraction and operando X-ray absorption spectroscopy characterization of Ni-MOF-74 and an amorphous Ni metal organic compound (Ni-MOC*) reveal that Fe uptake enhances OER by two processes: higher Ni oxidation states and enhanced flexibility of both, the electronic state and the local structure, when cycling the potential below and above the OER onset. To demonstrate the impressive OER activity and stability in Fe containing KOH, an Ni-MOC* anode was implemented in an anion exchange membrane water electrolyzer (AEM-WE) with 3 ppm Fe containing 1 M KOH electrolyte resulting in an outstanding cell voltage of 1.7 V (at an anode potential of 1.51 V) at 60 °C and 0.5 A cm<sup>-2</sup> exceeding 130 h of stable continuous operation.</p>\",\"PeriodicalId\":72877,\"journal\":{\"name\":\"EES catalysis\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-02-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11791620/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EES catalysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1039/d4ey00250d\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EES catalysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1039/d4ey00250d","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
镍基析氧反应(OER)电催化剂的性能随着合成过程中铁的掺入或从电解液中电化学吸收铁而增强。鉴于金属-有机骨架(MOF)电催化剂在水分解方面具有广阔的应用前景,本文以Ni-MOF-74为模型催化剂,研究了KOH电解液中Fe掺入对电催化剂OER活性和稳定性的影响。通过对Ni- mof -74和非晶态Ni金属有机化合物(Ni- moc *)的x射线衍射和operando x射线吸收光谱表征,揭示了Fe的吸收通过两个过程增强OER:当在OER起始点下方和上方循环电位时,更高的Ni氧化态和增强的电子态和局部结构的柔韧性。为了证明在含铁KOH中令人印象深刻的OER活性和稳定性,Ni-MOC*阳极被放置在阴离子交换膜水电解槽(AEM-WE)中,其中含有3 ppm的铁和1 M的KOH电解质,在60°C和0.5 A cm-2下,电池电压为1.7 V(阳极电位为1.51 V),持续稳定运行130小时。
The role of Fe incorporation into Ni-MOF-74 derived oxygen evolution electrocatalysts for anion exchange membrane water electrolysis.
The performance of Ni-based oxygen evolution reaction (OER) electrocatalysts is enhanced upon Fe incorporation into the structure during the synthesis process or electrochemical Fe uptake from the electrolyte. In light of the promising potential of metal-organic framework (MOF) electrocatalysts for water splitting, Ni-MOF-74 is used as a model catalyst to study the effect of Fe incorporation from KOH electrolyte on the electrocatalyst's OER activity and stability. The insights obtained from X-ray diffraction and operando X-ray absorption spectroscopy characterization of Ni-MOF-74 and an amorphous Ni metal organic compound (Ni-MOC*) reveal that Fe uptake enhances OER by two processes: higher Ni oxidation states and enhanced flexibility of both, the electronic state and the local structure, when cycling the potential below and above the OER onset. To demonstrate the impressive OER activity and stability in Fe containing KOH, an Ni-MOC* anode was implemented in an anion exchange membrane water electrolyzer (AEM-WE) with 3 ppm Fe containing 1 M KOH electrolyte resulting in an outstanding cell voltage of 1.7 V (at an anode potential of 1.51 V) at 60 °C and 0.5 A cm-2 exceeding 130 h of stable continuous operation.