短期重力变化对人小唾液腺干细胞特性的影响。

IF 2.3 Q1 DENTISTRY, ORAL SURGERY & MEDICINE
Jeong Mi Kim , Tri Ho Minh , Eun Jeong Jeon , Jin Mi Park , Sungryeal Kim , Jeong-Seok Choi
{"title":"短期重力变化对人小唾液腺干细胞特性的影响。","authors":"Jeong Mi Kim ,&nbsp;Tri Ho Minh ,&nbsp;Eun Jeong Jeon ,&nbsp;Jin Mi Park ,&nbsp;Sungryeal Kim ,&nbsp;Jeong-Seok Choi","doi":"10.1016/j.job.2025.100625","DOIUrl":null,"url":null,"abstract":"<div><h3>Objectives</h3><div>Human minor salivary gland stem cells (huMSGSCs) are promising in regenerative medicine. Their multipotent capabilities enable tissue regeneration and offer treatment potential for various diseases. The effects of hypergravity (HyperG) and microgravity (MicroG) on stemness and therapeutic potential are not well explored. Therefore, this study investigated the effects of short-term HyperG and MicroG exposure on huMSGSC stemness and differentiation potential for treating salivary gland dysfunction.</div><div>Methods: huMSGSCs were exposed to 1G, MicroG, and HyperG. Cell morphology, proliferation, sphere formation, and differentiation potential were analyzed. Stem cell and tight junction markers were evaluated using flow cytometry, real-time PCR, Western blot, and immunofluorescence analysis.</div></div><div><h3>Results</h3><div>huMSGSCs showed fibroblast-like morphology and robust proliferation up to passage 10. Differentiation into adipocytes, chondrocytes, and osteocytes was successful, despite enhanced lineage-specific marker expression. HyperG significantly increased proliferation at 48 and 72 h, MicroG-exposed cells formed more numerous and smaller spheres, and HyperG-exposed cells produced larger spheres. HyperG elevated stem cell marker (CD90, LGR5, SOX2) expression levels, and the expression of tight junction protein expressions (ZO-1, ZO-2) was higher under HyperG treatment.</div></div><div><h3>Conclusions</h3><div>Short-term HyperG and MicroG exposure differentially influenced huMSGSC stemness and differentiation potential. HyperG enhanced proliferation, stem cell marker expression, and differentiation capacity. These findings suggest the potential of optimizing huMSGSCs for regenerative therapies that target salivary gland dysfunction and other tissue regeneration applications.</div></div>","PeriodicalId":45851,"journal":{"name":"Journal of Oral Biosciences","volume":"67 1","pages":"Article 100625"},"PeriodicalIF":2.3000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of short-term gravitational changes on the human minor salivary gland stem cell characteristics\",\"authors\":\"Jeong Mi Kim ,&nbsp;Tri Ho Minh ,&nbsp;Eun Jeong Jeon ,&nbsp;Jin Mi Park ,&nbsp;Sungryeal Kim ,&nbsp;Jeong-Seok Choi\",\"doi\":\"10.1016/j.job.2025.100625\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Objectives</h3><div>Human minor salivary gland stem cells (huMSGSCs) are promising in regenerative medicine. Their multipotent capabilities enable tissue regeneration and offer treatment potential for various diseases. The effects of hypergravity (HyperG) and microgravity (MicroG) on stemness and therapeutic potential are not well explored. Therefore, this study investigated the effects of short-term HyperG and MicroG exposure on huMSGSC stemness and differentiation potential for treating salivary gland dysfunction.</div><div>Methods: huMSGSCs were exposed to 1G, MicroG, and HyperG. Cell morphology, proliferation, sphere formation, and differentiation potential were analyzed. Stem cell and tight junction markers were evaluated using flow cytometry, real-time PCR, Western blot, and immunofluorescence analysis.</div></div><div><h3>Results</h3><div>huMSGSCs showed fibroblast-like morphology and robust proliferation up to passage 10. Differentiation into adipocytes, chondrocytes, and osteocytes was successful, despite enhanced lineage-specific marker expression. HyperG significantly increased proliferation at 48 and 72 h, MicroG-exposed cells formed more numerous and smaller spheres, and HyperG-exposed cells produced larger spheres. HyperG elevated stem cell marker (CD90, LGR5, SOX2) expression levels, and the expression of tight junction protein expressions (ZO-1, ZO-2) was higher under HyperG treatment.</div></div><div><h3>Conclusions</h3><div>Short-term HyperG and MicroG exposure differentially influenced huMSGSC stemness and differentiation potential. HyperG enhanced proliferation, stem cell marker expression, and differentiation capacity. These findings suggest the potential of optimizing huMSGSCs for regenerative therapies that target salivary gland dysfunction and other tissue regeneration applications.</div></div>\",\"PeriodicalId\":45851,\"journal\":{\"name\":\"Journal of Oral Biosciences\",\"volume\":\"67 1\",\"pages\":\"Article 100625\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-02-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Oral Biosciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1349007925000143\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"DENTISTRY, ORAL SURGERY & MEDICINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Oral Biosciences","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1349007925000143","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
引用次数: 0

摘要

目的:人小涎腺干细胞(huMSGSCs)在再生医学中具有广阔的应用前景。它们的多能性使组织再生成为可能,并为各种疾病提供治疗潜力。超重力(HyperG)和微重力(MicroG)对干性和治疗潜力的影响尚未得到很好的探讨。因此,本研究探讨了短期HyperG和MicroG暴露对治疗唾液腺功能障碍的huMSGSC干性和分化潜力的影响。方法:将huMSGSCs暴露于1G、MicroG和HyperG。分析细胞形态、增殖、成球和分化潜能。使用流式细胞术、实时PCR、western blot和免疫荧光分析评估干细胞和紧密连接标记物。结果:huMSGSCs在传代10代时表现出成纤维细胞样形态和强劲的增殖。分化为脂肪细胞、软骨细胞和骨细胞是成功的,尽管谱系特异性标记物表达增强。在48和72小时,HyperG显著增加了细胞的增殖,暴露在microg下的细胞形成了更多更小的球,而暴露在HyperG下的细胞产生了更大的球。HyperG使干细胞标志物(CD90、LGR5、SOX2)表达水平升高,紧密连接蛋白(ZO-1、ZO-2)表达水平升高。结论:短期高g和微g暴露对huMSGSC的干性和分化潜力有不同的影响。HyperG增强了增殖、干细胞标记物表达和分化能力。这些发现提示了优化huMSGSCs用于针对唾液腺功能障碍和其他组织再生应用的再生治疗的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effect of short-term gravitational changes on the human minor salivary gland stem cell characteristics

Objectives

Human minor salivary gland stem cells (huMSGSCs) are promising in regenerative medicine. Their multipotent capabilities enable tissue regeneration and offer treatment potential for various diseases. The effects of hypergravity (HyperG) and microgravity (MicroG) on stemness and therapeutic potential are not well explored. Therefore, this study investigated the effects of short-term HyperG and MicroG exposure on huMSGSC stemness and differentiation potential for treating salivary gland dysfunction.
Methods: huMSGSCs were exposed to 1G, MicroG, and HyperG. Cell morphology, proliferation, sphere formation, and differentiation potential were analyzed. Stem cell and tight junction markers were evaluated using flow cytometry, real-time PCR, Western blot, and immunofluorescence analysis.

Results

huMSGSCs showed fibroblast-like morphology and robust proliferation up to passage 10. Differentiation into adipocytes, chondrocytes, and osteocytes was successful, despite enhanced lineage-specific marker expression. HyperG significantly increased proliferation at 48 and 72 h, MicroG-exposed cells formed more numerous and smaller spheres, and HyperG-exposed cells produced larger spheres. HyperG elevated stem cell marker (CD90, LGR5, SOX2) expression levels, and the expression of tight junction protein expressions (ZO-1, ZO-2) was higher under HyperG treatment.

Conclusions

Short-term HyperG and MicroG exposure differentially influenced huMSGSC stemness and differentiation potential. HyperG enhanced proliferation, stem cell marker expression, and differentiation capacity. These findings suggest the potential of optimizing huMSGSCs for regenerative therapies that target salivary gland dysfunction and other tissue regeneration applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Oral Biosciences
Journal of Oral Biosciences DENTISTRY, ORAL SURGERY & MEDICINE-
CiteScore
4.40
自引率
12.50%
发文量
57
审稿时长
37 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信