{"title":"磁性活性炭在废水中苯胺吸附中的应用。","authors":"Seyed Hatef Hashemi, Mansooreh Soleimani","doi":"10.1038/s41598-025-89129-3","DOIUrl":null,"url":null,"abstract":"<p><p>Aniline, a hazardous aromatic compound, is a notable contaminant in various industrial wastewater. As a simple and convenient process, adsorption could facilitate aniline adsorption from sewage. Magnetic activated carbon adsorbent (MAC) was produced using the co-precipitation method and applied to the adsorption of aniline from water. The characterization of this adsorbent was surveyed using Scanning Electron Microscopy (SEM), Fourier Transform Infrared Spectroscopy (FTIR), Brunauer-Emmett-Teller (BET), and Vibrating-Sample Magnetometer (VSM). Key operational parameters, including adsorbent dosage, initial aniline concentration, and initial pH, have been systematically investigated using the Central Composite Design (CCD) approach in the Response Surface Method (RSM). According to the results, the optimal adsorption percentage was achieved with a 2.9 g/L dosage, pH 7.4, 52.7 mg/L initial concentration, and 300 min of contact time. A study on Langmuir, Freundlich, and Sips isotherms was conducted, alongside evaluating pseudo-first-order and pseudo-second-order kinetics. The Sips isotherm and pseudo-second-order models showed the best fit, with R<sup>2</sup> values > 0.98 and 0.99, respectively. The thermodynamic study indicated a negative ΔG, confirming that aniline adsorption is spontaneous on both commercial and magnetic activated carbon.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"4570"},"PeriodicalIF":3.9000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11802909/pdf/","citationCount":"0","resultStr":"{\"title\":\"Usage of magnetic activated carbon as a potential adsorbent for aniline adsorption from wastewater.\",\"authors\":\"Seyed Hatef Hashemi, Mansooreh Soleimani\",\"doi\":\"10.1038/s41598-025-89129-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Aniline, a hazardous aromatic compound, is a notable contaminant in various industrial wastewater. As a simple and convenient process, adsorption could facilitate aniline adsorption from sewage. Magnetic activated carbon adsorbent (MAC) was produced using the co-precipitation method and applied to the adsorption of aniline from water. The characterization of this adsorbent was surveyed using Scanning Electron Microscopy (SEM), Fourier Transform Infrared Spectroscopy (FTIR), Brunauer-Emmett-Teller (BET), and Vibrating-Sample Magnetometer (VSM). Key operational parameters, including adsorbent dosage, initial aniline concentration, and initial pH, have been systematically investigated using the Central Composite Design (CCD) approach in the Response Surface Method (RSM). According to the results, the optimal adsorption percentage was achieved with a 2.9 g/L dosage, pH 7.4, 52.7 mg/L initial concentration, and 300 min of contact time. A study on Langmuir, Freundlich, and Sips isotherms was conducted, alongside evaluating pseudo-first-order and pseudo-second-order kinetics. The Sips isotherm and pseudo-second-order models showed the best fit, with R<sup>2</sup> values > 0.98 and 0.99, respectively. The thermodynamic study indicated a negative ΔG, confirming that aniline adsorption is spontaneous on both commercial and magnetic activated carbon.</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":\"15 1\",\"pages\":\"4570\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-02-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11802909/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-025-89129-3\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-89129-3","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Usage of magnetic activated carbon as a potential adsorbent for aniline adsorption from wastewater.
Aniline, a hazardous aromatic compound, is a notable contaminant in various industrial wastewater. As a simple and convenient process, adsorption could facilitate aniline adsorption from sewage. Magnetic activated carbon adsorbent (MAC) was produced using the co-precipitation method and applied to the adsorption of aniline from water. The characterization of this adsorbent was surveyed using Scanning Electron Microscopy (SEM), Fourier Transform Infrared Spectroscopy (FTIR), Brunauer-Emmett-Teller (BET), and Vibrating-Sample Magnetometer (VSM). Key operational parameters, including adsorbent dosage, initial aniline concentration, and initial pH, have been systematically investigated using the Central Composite Design (CCD) approach in the Response Surface Method (RSM). According to the results, the optimal adsorption percentage was achieved with a 2.9 g/L dosage, pH 7.4, 52.7 mg/L initial concentration, and 300 min of contact time. A study on Langmuir, Freundlich, and Sips isotherms was conducted, alongside evaluating pseudo-first-order and pseudo-second-order kinetics. The Sips isotherm and pseudo-second-order models showed the best fit, with R2 values > 0.98 and 0.99, respectively. The thermodynamic study indicated a negative ΔG, confirming that aniline adsorption is spontaneous on both commercial and magnetic activated carbon.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.