Anubhav Dogra, Dominic Jones, Arturo Ignacio Hernandez Serrano, Shruti Chakraborty, Jacob Joshua Young, Benjamin George Page, Joseph Hardwicke, Pietro Valdastri, Emma Pickwell-MacPherson
{"title":"基于太赫兹的自主机器人体内皮肤传感:PicoBot。","authors":"Anubhav Dogra, Dominic Jones, Arturo Ignacio Hernandez Serrano, Shruti Chakraborty, Jacob Joshua Young, Benjamin George Page, Joseph Hardwicke, Pietro Valdastri, Emma Pickwell-MacPherson","doi":"10.1038/s41598-025-88718-6","DOIUrl":null,"url":null,"abstract":"<p><p>Terahertz (THz) light has the unique properties of being very sensitive to water, non-ionizing, and having sub-millimeter depth resolution, making it suitable for medical imaging. Skin conditions including eczema, psoriasis and skin cancer affect a high percentage of the population and we have been developing a THz probe to help with their diagnosis, treatment and management. Our in vivo studies have been using a handheld THz probe, but this has been prone to positional errors through sensorimotor perturbations and tremors, giving spatially imprecise measurements and significant variations in contact pressure. As the operator tires through extended device use, these errors are further exacerbated. A robotic system is therefore needed to tune the critical parameters and achieve accurate and repeatable measurements of skin. This paper proposes an autonomous robotic THz acquisition system, the PicoBot, designed for non-invasive diagnosis of healthy and diseased skin conditions, based on hydration levels in the skin. The PicoBot can 3D scan and segment out the region of interest on the skin's surface, precisely position (± 0.5/1 mm/degrees) the probe normal to the surface, and apply a desired amount of force (± 0.1N) to maintain firm contact for the required 60 s during THz data acquisition. The robotic automation improves the stability of the acquired THz signals, reducing the standard deviation of amplitude fluctuations by over a factor of four at 1 THz compared to hand-held mode. We show THz results for skin measurements of volunteers with healthy and dry skin conditions on various parts of the body such as the volar forearm, forehead, cheeks, and hands. The tests conducted validate the preclinical feasibility of the concept along with the robustness and advantages of using the PicoBot, compared to a manual measurement setup.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"4568"},"PeriodicalIF":3.9000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11803113/pdf/","citationCount":"0","resultStr":"{\"title\":\"Towards autonomous robotic THz-based in vivo skin sensing: the PicoBot.\",\"authors\":\"Anubhav Dogra, Dominic Jones, Arturo Ignacio Hernandez Serrano, Shruti Chakraborty, Jacob Joshua Young, Benjamin George Page, Joseph Hardwicke, Pietro Valdastri, Emma Pickwell-MacPherson\",\"doi\":\"10.1038/s41598-025-88718-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Terahertz (THz) light has the unique properties of being very sensitive to water, non-ionizing, and having sub-millimeter depth resolution, making it suitable for medical imaging. Skin conditions including eczema, psoriasis and skin cancer affect a high percentage of the population and we have been developing a THz probe to help with their diagnosis, treatment and management. Our in vivo studies have been using a handheld THz probe, but this has been prone to positional errors through sensorimotor perturbations and tremors, giving spatially imprecise measurements and significant variations in contact pressure. As the operator tires through extended device use, these errors are further exacerbated. A robotic system is therefore needed to tune the critical parameters and achieve accurate and repeatable measurements of skin. This paper proposes an autonomous robotic THz acquisition system, the PicoBot, designed for non-invasive diagnosis of healthy and diseased skin conditions, based on hydration levels in the skin. The PicoBot can 3D scan and segment out the region of interest on the skin's surface, precisely position (± 0.5/1 mm/degrees) the probe normal to the surface, and apply a desired amount of force (± 0.1N) to maintain firm contact for the required 60 s during THz data acquisition. The robotic automation improves the stability of the acquired THz signals, reducing the standard deviation of amplitude fluctuations by over a factor of four at 1 THz compared to hand-held mode. We show THz results for skin measurements of volunteers with healthy and dry skin conditions on various parts of the body such as the volar forearm, forehead, cheeks, and hands. The tests conducted validate the preclinical feasibility of the concept along with the robustness and advantages of using the PicoBot, compared to a manual measurement setup.</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":\"15 1\",\"pages\":\"4568\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-02-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11803113/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-025-88718-6\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-88718-6","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Towards autonomous robotic THz-based in vivo skin sensing: the PicoBot.
Terahertz (THz) light has the unique properties of being very sensitive to water, non-ionizing, and having sub-millimeter depth resolution, making it suitable for medical imaging. Skin conditions including eczema, psoriasis and skin cancer affect a high percentage of the population and we have been developing a THz probe to help with their diagnosis, treatment and management. Our in vivo studies have been using a handheld THz probe, but this has been prone to positional errors through sensorimotor perturbations and tremors, giving spatially imprecise measurements and significant variations in contact pressure. As the operator tires through extended device use, these errors are further exacerbated. A robotic system is therefore needed to tune the critical parameters and achieve accurate and repeatable measurements of skin. This paper proposes an autonomous robotic THz acquisition system, the PicoBot, designed for non-invasive diagnosis of healthy and diseased skin conditions, based on hydration levels in the skin. The PicoBot can 3D scan and segment out the region of interest on the skin's surface, precisely position (± 0.5/1 mm/degrees) the probe normal to the surface, and apply a desired amount of force (± 0.1N) to maintain firm contact for the required 60 s during THz data acquisition. The robotic automation improves the stability of the acquired THz signals, reducing the standard deviation of amplitude fluctuations by over a factor of four at 1 THz compared to hand-held mode. We show THz results for skin measurements of volunteers with healthy and dry skin conditions on various parts of the body such as the volar forearm, forehead, cheeks, and hands. The tests conducted validate the preclinical feasibility of the concept along with the robustness and advantages of using the PicoBot, compared to a manual measurement setup.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.