林德利几何百分位数的参数自举控制图。

IF 2.6 3区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
PLoS ONE Pub Date : 2025-02-06 eCollection Date: 2025-01-01 DOI:10.1371/journal.pone.0316449
Muthanna Ali Hussein Al-Lami, Hossein Jabbari Khamnei, Ali Akbar Heydari
{"title":"林德利几何百分位数的参数自举控制图。","authors":"Muthanna Ali Hussein Al-Lami, Hossein Jabbari Khamnei, Ali Akbar Heydari","doi":"10.1371/journal.pone.0316449","DOIUrl":null,"url":null,"abstract":"<p><p>Control charts are vital for quality control and process monitoring, helping businesses identify variations in production. Traditional control charts, like Shewhart charts, may not work well for skewed distributions, such as the Lindley geometric distribution (LG). This study introduces a new control chart that uses parametric bootstrap techniques to monitor percentiles of the LG distribution, providing a more effective quality control method. The LG distribution is useful for modeling material strength and failures, especially in structural design, where lower percentiles indicate reduced tensile strength. We conducted extensive simulations to assess the proposed control chart's effectiveness, considering various distribution parameters, percentile values, Type I error rates, and sample sizes. Our findings highlight how subgroup size, percentiles, and significance levels affect control limits, stressing the need for careful parameter selection in monitoring processes. The results show that the new control chart is highly sensitive to changes in LG distribution parameters and performs consistently across different percentiles. This suggests its practical relevance and robustness for industrial applications in quality control. Future research should explore its performance in real-world production settings to confirm its efficiency and reliability.</p>","PeriodicalId":20189,"journal":{"name":"PLoS ONE","volume":"20 2","pages":"e0316449"},"PeriodicalIF":2.6000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11801588/pdf/","citationCount":"0","resultStr":"{\"title\":\"A parametric bootstrap control chart for Lindley Geometric percentiles.\",\"authors\":\"Muthanna Ali Hussein Al-Lami, Hossein Jabbari Khamnei, Ali Akbar Heydari\",\"doi\":\"10.1371/journal.pone.0316449\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Control charts are vital for quality control and process monitoring, helping businesses identify variations in production. Traditional control charts, like Shewhart charts, may not work well for skewed distributions, such as the Lindley geometric distribution (LG). This study introduces a new control chart that uses parametric bootstrap techniques to monitor percentiles of the LG distribution, providing a more effective quality control method. The LG distribution is useful for modeling material strength and failures, especially in structural design, where lower percentiles indicate reduced tensile strength. We conducted extensive simulations to assess the proposed control chart's effectiveness, considering various distribution parameters, percentile values, Type I error rates, and sample sizes. Our findings highlight how subgroup size, percentiles, and significance levels affect control limits, stressing the need for careful parameter selection in monitoring processes. The results show that the new control chart is highly sensitive to changes in LG distribution parameters and performs consistently across different percentiles. This suggests its practical relevance and robustness for industrial applications in quality control. Future research should explore its performance in real-world production settings to confirm its efficiency and reliability.</p>\",\"PeriodicalId\":20189,\"journal\":{\"name\":\"PLoS ONE\",\"volume\":\"20 2\",\"pages\":\"e0316449\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-02-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11801588/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PLoS ONE\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1371/journal.pone.0316449\",\"RegionNum\":3,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS ONE","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1371/journal.pone.0316449","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

控制图对于质量控制和过程监控至关重要,可以帮助企业识别生产中的变化。传统的控制图,如Shewhart图,可能不适用于倾斜分布,如Lindley几何分布(LG)。本研究引入了一种新的控制图,使用参数自举技术来监测LG分布的百分位数,提供了一种更有效的质量控制方法。LG分布对于材料强度和失效建模非常有用,特别是在结构设计中,较低的百分位数表示抗拉强度降低。我们进行了广泛的模拟来评估所提出的控制图的有效性,考虑了各种分布参数、百分位数值、I型错误率和样本量。我们的研究结果强调了亚组大小、百分位数和显著性水平如何影响控制极限,强调了在监测过程中仔细选择参数的必要性。结果表明,新的控制图对LG分布参数的变化高度敏感,并且在不同的百分位数上表现一致。这表明它在质量控制方面的工业应用具有实际的相关性和鲁棒性。未来的研究应探索其在实际生产环境中的性能,以确认其效率和可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A parametric bootstrap control chart for Lindley Geometric percentiles.

A parametric bootstrap control chart for Lindley Geometric percentiles.

A parametric bootstrap control chart for Lindley Geometric percentiles.

A parametric bootstrap control chart for Lindley Geometric percentiles.

Control charts are vital for quality control and process monitoring, helping businesses identify variations in production. Traditional control charts, like Shewhart charts, may not work well for skewed distributions, such as the Lindley geometric distribution (LG). This study introduces a new control chart that uses parametric bootstrap techniques to monitor percentiles of the LG distribution, providing a more effective quality control method. The LG distribution is useful for modeling material strength and failures, especially in structural design, where lower percentiles indicate reduced tensile strength. We conducted extensive simulations to assess the proposed control chart's effectiveness, considering various distribution parameters, percentile values, Type I error rates, and sample sizes. Our findings highlight how subgroup size, percentiles, and significance levels affect control limits, stressing the need for careful parameter selection in monitoring processes. The results show that the new control chart is highly sensitive to changes in LG distribution parameters and performs consistently across different percentiles. This suggests its practical relevance and robustness for industrial applications in quality control. Future research should explore its performance in real-world production settings to confirm its efficiency and reliability.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
PLoS ONE
PLoS ONE 生物-生物学
CiteScore
6.20
自引率
5.40%
发文量
14242
审稿时长
3.7 months
期刊介绍: PLOS ONE is an international, peer-reviewed, open-access, online publication. PLOS ONE welcomes reports on primary research from any scientific discipline. It provides: * Open-access—freely accessible online, authors retain copyright * Fast publication times * Peer review by expert, practicing researchers * Post-publication tools to indicate quality and impact * Community-based dialogue on articles * Worldwide media coverage
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信