表没食子儿茶素-3-没食子酸酯通过Nrf2通路调节内皮祖细胞铁下垂促进深静脉血栓再通。

IF 6.1 2区 医学 Q1 CHEMISTRY, MEDICINAL
Phytotherapy Research Pub Date : 2025-03-01 Epub Date: 2025-02-07 DOI:10.1002/ptr.8457
Da Li, Youjun Mao, Xiaosong Zhang, Yusheng Wang, Hao Tang, He Huang, Xiaomin Huang, Honggang Zhang
{"title":"表没食子儿茶素-3-没食子酸酯通过Nrf2通路调节内皮祖细胞铁下垂促进深静脉血栓再通。","authors":"Da Li, Youjun Mao, Xiaosong Zhang, Yusheng Wang, Hao Tang, He Huang, Xiaomin Huang, Honggang Zhang","doi":"10.1002/ptr.8457","DOIUrl":null,"url":null,"abstract":"<p><p>Endothelial progenitor cells (EPCs) provide a promising therapeutic choice for deep venous thrombosis (DVT). Their number is increased by epigallocatechin-3-gallate (EGCG) in patients with diabetes. Although EGCG is effective against doxorubicin-induced ferroptosis and cardiotoxicity, its efficacy in DVT treatment has not been well studied. This study was aimed at assessing the effects of EGCG on EPC ferroptosis and recanalization in a DVT model. EPCs were treated with EGCG, and their proliferation and migration, angiogenesis, and apoptosis were evaluated using cell counting kit-8 and colony formation, Transwell, tube formation, and flow cytometry assays. Levels of iron, ferroptosis markers, and reactive oxygen species (ROS), and mitochondrial membrane potential (ΔΨm) were measured. Expression of ferroptosis-related genes and proteins was analyzed using qRT-PCR and western blotting, respectively. Promoter activation was evaluated using a dual-luciferase reporter system. Thrombus recanalization was examined in the DVT mouse model via hematoxylin and eosin staining and digital subtraction angiography. EGCG promoted EPC proliferation, migration, and angiogenesis and suppressed apoptosis. It attenuated ferroptosis by reducing iron and ROS accumulation, increasing ΔΨm, and regulating the expression of ferroptosis-related genes and proteins (ALOX15, ACSL4, and FTH1). EGCG enhanced the expression of Nrf2 and its targets, Slc7A11, HO-1, and GPX4. EGCG inhibited thrombogenesis and promoted recanalization in DVT mice, an effect mediated through the Nrf2 pathway and enhanced upon EPC transplantation. Transplantation of EGCG-pretreated EPCs facilitates DVT resolution via ferroptosis blockade. EGCG-pretreated EPC-based therapy may provide a novel option for patients with DVT.</p>","PeriodicalId":20110,"journal":{"name":"Phytotherapy Research","volume":" ","pages":"1632-1644"},"PeriodicalIF":6.1000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Epigallocatechin-3-Gallate Promotes Recanalization in Deep Vein Thrombosis by Modulating Endothelial Progenitor Cell Ferroptosis Through the Nrf2 Pathway.\",\"authors\":\"Da Li, Youjun Mao, Xiaosong Zhang, Yusheng Wang, Hao Tang, He Huang, Xiaomin Huang, Honggang Zhang\",\"doi\":\"10.1002/ptr.8457\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Endothelial progenitor cells (EPCs) provide a promising therapeutic choice for deep venous thrombosis (DVT). Their number is increased by epigallocatechin-3-gallate (EGCG) in patients with diabetes. Although EGCG is effective against doxorubicin-induced ferroptosis and cardiotoxicity, its efficacy in DVT treatment has not been well studied. This study was aimed at assessing the effects of EGCG on EPC ferroptosis and recanalization in a DVT model. EPCs were treated with EGCG, and their proliferation and migration, angiogenesis, and apoptosis were evaluated using cell counting kit-8 and colony formation, Transwell, tube formation, and flow cytometry assays. Levels of iron, ferroptosis markers, and reactive oxygen species (ROS), and mitochondrial membrane potential (ΔΨm) were measured. Expression of ferroptosis-related genes and proteins was analyzed using qRT-PCR and western blotting, respectively. Promoter activation was evaluated using a dual-luciferase reporter system. Thrombus recanalization was examined in the DVT mouse model via hematoxylin and eosin staining and digital subtraction angiography. EGCG promoted EPC proliferation, migration, and angiogenesis and suppressed apoptosis. It attenuated ferroptosis by reducing iron and ROS accumulation, increasing ΔΨm, and regulating the expression of ferroptosis-related genes and proteins (ALOX15, ACSL4, and FTH1). EGCG enhanced the expression of Nrf2 and its targets, Slc7A11, HO-1, and GPX4. EGCG inhibited thrombogenesis and promoted recanalization in DVT mice, an effect mediated through the Nrf2 pathway and enhanced upon EPC transplantation. Transplantation of EGCG-pretreated EPCs facilitates DVT resolution via ferroptosis blockade. EGCG-pretreated EPC-based therapy may provide a novel option for patients with DVT.</p>\",\"PeriodicalId\":20110,\"journal\":{\"name\":\"Phytotherapy Research\",\"volume\":\" \",\"pages\":\"1632-1644\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2025-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Phytotherapy Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/ptr.8457\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/2/7 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Phytotherapy Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/ptr.8457","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/7 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

摘要

内皮祖细胞(EPCs)为深静脉血栓(DVT)的治疗提供了一个有希望的选择。在糖尿病患者中,表没食子儿茶素-3-没食子酸酯(EGCG)增加了它们的数量。虽然EGCG对阿霉素诱导的铁下垂和心脏毒性有效,但其在DVT治疗中的疗效尚未得到很好的研究。本研究旨在评估EGCG在DVT模型中对EPC铁下垂和再通的影响。EGCG处理EPCs,通过细胞计数试剂盒-8和集落形成、Transwell、管形成和流式细胞术检测评估EPCs的增殖、迁移、血管生成和凋亡。测量铁、铁下垂标志物、活性氧(ROS)和线粒体膜电位(ΔΨm)的水平。采用qRT-PCR和western blotting分别分析凋亡相关基因和蛋白的表达。使用双荧光素酶报告系统评估启动子激活。通过苏木精、伊红染色和数字减影血管造影检查小鼠DVT模型血栓再通情况。EGCG促进EPC增殖、迁移和血管生成,抑制细胞凋亡。它通过减少铁和ROS的积累,增加ΔΨm,调节铁中毒相关基因和蛋白(ALOX15, ACSL4和FTH1)的表达来减轻铁中毒。EGCG增强Nrf2及其靶点Slc7A11、HO-1和GPX4的表达。EGCG在DVT小鼠中抑制血栓形成并促进再通,这一作用通过Nrf2途径介导,并在EPC移植中增强。移植经egcg预处理的内皮祖细胞通过铁下垂阻断促进DVT的解决。egcg预处理的epc治疗可能为深静脉血栓患者提供一种新的选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Epigallocatechin-3-Gallate Promotes Recanalization in Deep Vein Thrombosis by Modulating Endothelial Progenitor Cell Ferroptosis Through the Nrf2 Pathway.

Endothelial progenitor cells (EPCs) provide a promising therapeutic choice for deep venous thrombosis (DVT). Their number is increased by epigallocatechin-3-gallate (EGCG) in patients with diabetes. Although EGCG is effective against doxorubicin-induced ferroptosis and cardiotoxicity, its efficacy in DVT treatment has not been well studied. This study was aimed at assessing the effects of EGCG on EPC ferroptosis and recanalization in a DVT model. EPCs were treated with EGCG, and their proliferation and migration, angiogenesis, and apoptosis were evaluated using cell counting kit-8 and colony formation, Transwell, tube formation, and flow cytometry assays. Levels of iron, ferroptosis markers, and reactive oxygen species (ROS), and mitochondrial membrane potential (ΔΨm) were measured. Expression of ferroptosis-related genes and proteins was analyzed using qRT-PCR and western blotting, respectively. Promoter activation was evaluated using a dual-luciferase reporter system. Thrombus recanalization was examined in the DVT mouse model via hematoxylin and eosin staining and digital subtraction angiography. EGCG promoted EPC proliferation, migration, and angiogenesis and suppressed apoptosis. It attenuated ferroptosis by reducing iron and ROS accumulation, increasing ΔΨm, and regulating the expression of ferroptosis-related genes and proteins (ALOX15, ACSL4, and FTH1). EGCG enhanced the expression of Nrf2 and its targets, Slc7A11, HO-1, and GPX4. EGCG inhibited thrombogenesis and promoted recanalization in DVT mice, an effect mediated through the Nrf2 pathway and enhanced upon EPC transplantation. Transplantation of EGCG-pretreated EPCs facilitates DVT resolution via ferroptosis blockade. EGCG-pretreated EPC-based therapy may provide a novel option for patients with DVT.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Phytotherapy Research
Phytotherapy Research 医学-药学
CiteScore
12.80
自引率
5.60%
发文量
325
审稿时长
2.6 months
期刊介绍: Phytotherapy Research is an internationally recognized pharmacological journal that serves as a trailblazing resource for biochemists, pharmacologists, and toxicologists. We strive to disseminate groundbreaking research on medicinal plants, pushing the boundaries of knowledge and understanding in this field. Our primary focus areas encompass pharmacology, toxicology, and the clinical applications of herbs and natural products in medicine. We actively encourage submissions on the effects of commonly consumed food ingredients and standardized plant extracts. We welcome a range of contributions including original research papers, review articles, and letters. By providing a platform for the latest developments and discoveries in phytotherapy, we aim to support the advancement of scientific knowledge and contribute to the improvement of modern medicine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信