杨梅生物活性化合物:抗氧化见解及H+K+- atp酶和H2受体靶点的对接研究

IF 1.9 4区 医学 Q3 CHEMISTRY, MEDICINAL
Rashmi Pathak, Phool Chandra
{"title":"杨梅生物活性化合物:抗氧化见解及H+K+- atp酶和H2受体靶点的对接研究","authors":"Rashmi Pathak, Phool Chandra","doi":"10.2174/0115734064366819250125070619","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Myrica esculenta (Myricaceae) are common in the Indian Himalayas. Traditional medicine uses it to treat chronic bronchitis, inflammation, stomach ulcers, anaemia, diarrhoea, asthma, and ear, throat, and nose disorders. Its varied medicinal benefits are recognised in the ayurvedic pharmacopoeia.</p><p><strong>Aim: </strong>Isolation of Bioactive Compounds from M. esculenta: Assessment of Antioxidant Activity and Molecular Docking Studies Targeting the H+K+-ATPase enzyme and H2 Receptor Material and Methods: The fruit of the Myrica esculenta plant was extracted. The total phenolic and total flavonoid content of the extract were determined. Following column chromatography, two phytoconstituents were identified by mass spectroscopy, FTIR, and NMR. The antioxidant activity of phytoconstituents was evaluated using the DPPH Scavenging Assay, Reactive Nitrogen Oxide Scavenging Assay, and Hydroxyl Free Radical Scavenging Assay. Then, molecular docking studies were performed against the H+K+-ATPase enzyme and H2 Receptor.</p><p><strong>Results: </strong>The research successfully extracted methanolic extract from M. esculenta by maceration, which yielded rich in flavonoids and phenolic content and isolated compounds using column chromatography, which was further characterized to be myricetin and catechin using Mass spectroscopy, FTIR, and NMR. The further evaluation of the antioxidant activity of compounds demonstrated significant activity with IC50 value indicating strong free radical scavenging activity. Molecular docking studies were performed against the H+K+-ATPase enzyme and H2 Receptor, revealing that both the compounds exhibit high binding affinity and favorable interactions with key sites.</p><p><strong>Conclusion: </strong>The findings suggest that the isolated compounds myricetin and catechin possess potential antioxidant activity and could be a potential therapeutic target for the H+K+-ATPase enzyme and H2 Receptor.</p>","PeriodicalId":18382,"journal":{"name":"Medicinal Chemistry","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bioactive Compounds from Myrica esculenta: Antioxidant Insights and Docking Studies on H+K+-ATPase and H2 Receptor Targets.\",\"authors\":\"Rashmi Pathak, Phool Chandra\",\"doi\":\"10.2174/0115734064366819250125070619\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Myrica esculenta (Myricaceae) are common in the Indian Himalayas. Traditional medicine uses it to treat chronic bronchitis, inflammation, stomach ulcers, anaemia, diarrhoea, asthma, and ear, throat, and nose disorders. Its varied medicinal benefits are recognised in the ayurvedic pharmacopoeia.</p><p><strong>Aim: </strong>Isolation of Bioactive Compounds from M. esculenta: Assessment of Antioxidant Activity and Molecular Docking Studies Targeting the H+K+-ATPase enzyme and H2 Receptor Material and Methods: The fruit of the Myrica esculenta plant was extracted. The total phenolic and total flavonoid content of the extract were determined. Following column chromatography, two phytoconstituents were identified by mass spectroscopy, FTIR, and NMR. The antioxidant activity of phytoconstituents was evaluated using the DPPH Scavenging Assay, Reactive Nitrogen Oxide Scavenging Assay, and Hydroxyl Free Radical Scavenging Assay. Then, molecular docking studies were performed against the H+K+-ATPase enzyme and H2 Receptor.</p><p><strong>Results: </strong>The research successfully extracted methanolic extract from M. esculenta by maceration, which yielded rich in flavonoids and phenolic content and isolated compounds using column chromatography, which was further characterized to be myricetin and catechin using Mass spectroscopy, FTIR, and NMR. The further evaluation of the antioxidant activity of compounds demonstrated significant activity with IC50 value indicating strong free radical scavenging activity. Molecular docking studies were performed against the H+K+-ATPase enzyme and H2 Receptor, revealing that both the compounds exhibit high binding affinity and favorable interactions with key sites.</p><p><strong>Conclusion: </strong>The findings suggest that the isolated compounds myricetin and catechin possess potential antioxidant activity and could be a potential therapeutic target for the H+K+-ATPase enzyme and H2 Receptor.</p>\",\"PeriodicalId\":18382,\"journal\":{\"name\":\"Medicinal Chemistry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2025-02-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medicinal Chemistry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2174/0115734064366819250125070619\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medicinal Chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0115734064366819250125070619","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

摘要

背景:杨梅科(Myricaceae)在印度喜马拉雅地区很常见。传统医学用它来治疗慢性支气管炎、炎症、胃溃疡、贫血、腹泻、哮喘以及耳咽部和鼻部疾病。它的各种药用价值在阿育吠陀药典中得到认可。目的:杨梅生物活性化合物的分离、抗氧化活性评价及H+K+- atp酶和H2受体的分子对接研究。材料和方法:对杨梅果实进行提取。测定提取液中总酚和总黄酮的含量。柱层析后,通过质谱、FTIR和NMR鉴定了两种植物成分。利用DPPH清除实验、活性氮氧化物清除实验和羟基自由基清除实验来评估植物成分的抗氧化活性。然后,对H+K+- atp酶和H2受体进行分子对接研究。结果:本研究成功地通过浸渍法提取了蜜藤的甲醇提取物,得到了丰富的黄酮和酚类化合物,并通过柱层析分离得到化合物,通过质谱、FTIR和NMR进一步鉴定为杨梅素和儿茶素。进一步的抗氧化活性评价表明,化合物具有显著的抗氧化活性,IC50值表明具有较强的自由基清除活性。对H+K+- atp酶和H2受体进行了分子对接研究,发现这两种化合物都具有高的结合亲和力和与关键位点的良好相互作用。结论:分离得到的杨梅素和儿茶素具有潜在的抗氧化活性,可能是H+K+- atp酶和H2受体的潜在治疗靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bioactive Compounds from Myrica esculenta: Antioxidant Insights and Docking Studies on H+K+-ATPase and H2 Receptor Targets.

Background: Myrica esculenta (Myricaceae) are common in the Indian Himalayas. Traditional medicine uses it to treat chronic bronchitis, inflammation, stomach ulcers, anaemia, diarrhoea, asthma, and ear, throat, and nose disorders. Its varied medicinal benefits are recognised in the ayurvedic pharmacopoeia.

Aim: Isolation of Bioactive Compounds from M. esculenta: Assessment of Antioxidant Activity and Molecular Docking Studies Targeting the H+K+-ATPase enzyme and H2 Receptor Material and Methods: The fruit of the Myrica esculenta plant was extracted. The total phenolic and total flavonoid content of the extract were determined. Following column chromatography, two phytoconstituents were identified by mass spectroscopy, FTIR, and NMR. The antioxidant activity of phytoconstituents was evaluated using the DPPH Scavenging Assay, Reactive Nitrogen Oxide Scavenging Assay, and Hydroxyl Free Radical Scavenging Assay. Then, molecular docking studies were performed against the H+K+-ATPase enzyme and H2 Receptor.

Results: The research successfully extracted methanolic extract from M. esculenta by maceration, which yielded rich in flavonoids and phenolic content and isolated compounds using column chromatography, which was further characterized to be myricetin and catechin using Mass spectroscopy, FTIR, and NMR. The further evaluation of the antioxidant activity of compounds demonstrated significant activity with IC50 value indicating strong free radical scavenging activity. Molecular docking studies were performed against the H+K+-ATPase enzyme and H2 Receptor, revealing that both the compounds exhibit high binding affinity and favorable interactions with key sites.

Conclusion: The findings suggest that the isolated compounds myricetin and catechin possess potential antioxidant activity and could be a potential therapeutic target for the H+K+-ATPase enzyme and H2 Receptor.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Medicinal Chemistry
Medicinal Chemistry 医学-医药化学
CiteScore
4.30
自引率
4.30%
发文量
109
审稿时长
12 months
期刊介绍: Aims & Scope Medicinal Chemistry a peer-reviewed journal, aims to cover all the latest outstanding developments in medicinal chemistry and rational drug design. The journal publishes original research, mini-review articles and guest edited thematic issues covering recent research and developments in the field. Articles are published rapidly by taking full advantage of Internet technology for both the submission and peer review of manuscripts. Medicinal Chemistry is an essential journal for all involved in drug design and discovery.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信