Jeremy E B Guntoro, Benjamin J Qureshi, Thomas E Ouldridge
{"title":"非均质性和产物剥离在模板化聚合物复制中的相互作用。","authors":"Jeremy E B Guntoro, Benjamin J Qureshi, Thomas E Ouldridge","doi":"10.1063/5.0245687","DOIUrl":null,"url":null,"abstract":"<p><p>Templated copolymerization, in which information stored in the sequence of a heteropolymer template is copied into another polymer product, is the mechanism behind all known methods of genetic information transfer. A key aspect of templated copolymerization is the eventual detachment of the product from the template. A second key feature of natural biochemical systems is that the template-binding free energies of both correctly matched and incorrect monomers are heterogeneous. Previous work has considered the thermodynamic consequences of detachment and the consequences of heterogeneity for polymerization speed and accuracy, but the interplay of both separation and heterogeneity remains unexplored. In this work, we investigate a minimal model of templated copying that simultaneously incorporates both detachment from behind the leading edge of the growing copy and heterogeneous interactions. We first extend existing coarse-graining methods for models of polymerization to allow for heterogeneous interactions. We then show that heterogeneous copying systems with explicit detachment do not exhibit the subdiffusive behavior observed in the absence of detachment when near equilibrium. Next, we show that heterogeneity in correct monomer interactions tends to result in slower, less accurate copying, while heterogeneity in incorrect monomer interactions tends to result in faster, more accurate copying, due to an increased roughness in the free energy landscape of either correct or incorrect monomer pairs. Finally, we show that heterogeneity can improve on known thermodynamic efficiencies of homogeneous copying, but these increased thermodynamic efficiencies do not always translate to increased efficiencies of information transfer.</p>","PeriodicalId":15313,"journal":{"name":"Journal of Chemical Physics","volume":"162 5","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The interplay of heterogeneity and product detachment in templated polymer copying.\",\"authors\":\"Jeremy E B Guntoro, Benjamin J Qureshi, Thomas E Ouldridge\",\"doi\":\"10.1063/5.0245687\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Templated copolymerization, in which information stored in the sequence of a heteropolymer template is copied into another polymer product, is the mechanism behind all known methods of genetic information transfer. A key aspect of templated copolymerization is the eventual detachment of the product from the template. A second key feature of natural biochemical systems is that the template-binding free energies of both correctly matched and incorrect monomers are heterogeneous. Previous work has considered the thermodynamic consequences of detachment and the consequences of heterogeneity for polymerization speed and accuracy, but the interplay of both separation and heterogeneity remains unexplored. In this work, we investigate a minimal model of templated copying that simultaneously incorporates both detachment from behind the leading edge of the growing copy and heterogeneous interactions. We first extend existing coarse-graining methods for models of polymerization to allow for heterogeneous interactions. We then show that heterogeneous copying systems with explicit detachment do not exhibit the subdiffusive behavior observed in the absence of detachment when near equilibrium. Next, we show that heterogeneity in correct monomer interactions tends to result in slower, less accurate copying, while heterogeneity in incorrect monomer interactions tends to result in faster, more accurate copying, due to an increased roughness in the free energy landscape of either correct or incorrect monomer pairs. Finally, we show that heterogeneity can improve on known thermodynamic efficiencies of homogeneous copying, but these increased thermodynamic efficiencies do not always translate to increased efficiencies of information transfer.</p>\",\"PeriodicalId\":15313,\"journal\":{\"name\":\"Journal of Chemical Physics\",\"volume\":\"162 5\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-02-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemical Physics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0245687\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1063/5.0245687","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
The interplay of heterogeneity and product detachment in templated polymer copying.
Templated copolymerization, in which information stored in the sequence of a heteropolymer template is copied into another polymer product, is the mechanism behind all known methods of genetic information transfer. A key aspect of templated copolymerization is the eventual detachment of the product from the template. A second key feature of natural biochemical systems is that the template-binding free energies of both correctly matched and incorrect monomers are heterogeneous. Previous work has considered the thermodynamic consequences of detachment and the consequences of heterogeneity for polymerization speed and accuracy, but the interplay of both separation and heterogeneity remains unexplored. In this work, we investigate a minimal model of templated copying that simultaneously incorporates both detachment from behind the leading edge of the growing copy and heterogeneous interactions. We first extend existing coarse-graining methods for models of polymerization to allow for heterogeneous interactions. We then show that heterogeneous copying systems with explicit detachment do not exhibit the subdiffusive behavior observed in the absence of detachment when near equilibrium. Next, we show that heterogeneity in correct monomer interactions tends to result in slower, less accurate copying, while heterogeneity in incorrect monomer interactions tends to result in faster, more accurate copying, due to an increased roughness in the free energy landscape of either correct or incorrect monomer pairs. Finally, we show that heterogeneity can improve on known thermodynamic efficiencies of homogeneous copying, but these increased thermodynamic efficiencies do not always translate to increased efficiencies of information transfer.
期刊介绍:
The Journal of Chemical Physics publishes quantitative and rigorous science of long-lasting value in methods and applications of chemical physics. The Journal also publishes brief Communications of significant new findings, Perspectives on the latest advances in the field, and Special Topic issues. The Journal focuses on innovative research in experimental and theoretical areas of chemical physics, including spectroscopy, dynamics, kinetics, statistical mechanics, and quantum mechanics. In addition, topical areas such as polymers, soft matter, materials, surfaces/interfaces, and systems of biological relevance are of increasing importance.
Topical coverage includes:
Theoretical Methods and Algorithms
Advanced Experimental Techniques
Atoms, Molecules, and Clusters
Liquids, Glasses, and Crystals
Surfaces, Interfaces, and Materials
Polymers and Soft Matter
Biological Molecules and Networks.