考虑交通时空相关性的基于变压器的短期交通预测模型。

IF 2.6 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Frontiers in Neurorobotics Pub Date : 2025-01-23 eCollection Date: 2025-01-01 DOI:10.3389/fnbot.2025.1527908
Ande Chang, Yuting Ji, Yiming Bie
{"title":"考虑交通时空相关性的基于变压器的短期交通预测模型。","authors":"Ande Chang, Yuting Ji, Yiming Bie","doi":"10.3389/fnbot.2025.1527908","DOIUrl":null,"url":null,"abstract":"<p><p>Traffic forecasting is crucial for a variety of applications, including route optimization, signal management, and travel time estimation. However, many existing prediction models struggle to accurately capture the spatiotemporal patterns in traffic data due to its inherent nonlinearity, high dimensionality, and complex dependencies. To address these challenges, a short-term traffic forecasting model, Trafficformer, is proposed based on the Transformer framework. The model first uses a multilayer perceptron to extract features from historical traffic data, then enhances spatial interactions through Transformer-based encoding. By incorporating road network topology, a spatial mask filters out noise and irrelevant interactions, improving prediction accuracy. Finally, traffic speed is predicted using another multilayer perceptron. In the experiments, Trafficformer is evaluated on the Seattle Loop Detector dataset. It is compared with six baseline methods, with Mean Absolute Error, Mean Absolute Percentage Error, and Root Mean Square Error used as metrics. The results show that Trafficformer not only has higher prediction accuracy, but also can effectively identify key sections, and has great potential in intelligent traffic control optimization and refined traffic resource allocation.</p>","PeriodicalId":12628,"journal":{"name":"Frontiers in Neurorobotics","volume":"19 ","pages":"1527908"},"PeriodicalIF":2.6000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11799296/pdf/","citationCount":"0","resultStr":"{\"title\":\"Transformer-based short-term traffic forecasting model considering traffic spatiotemporal correlation.\",\"authors\":\"Ande Chang, Yuting Ji, Yiming Bie\",\"doi\":\"10.3389/fnbot.2025.1527908\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Traffic forecasting is crucial for a variety of applications, including route optimization, signal management, and travel time estimation. However, many existing prediction models struggle to accurately capture the spatiotemporal patterns in traffic data due to its inherent nonlinearity, high dimensionality, and complex dependencies. To address these challenges, a short-term traffic forecasting model, Trafficformer, is proposed based on the Transformer framework. The model first uses a multilayer perceptron to extract features from historical traffic data, then enhances spatial interactions through Transformer-based encoding. By incorporating road network topology, a spatial mask filters out noise and irrelevant interactions, improving prediction accuracy. Finally, traffic speed is predicted using another multilayer perceptron. In the experiments, Trafficformer is evaluated on the Seattle Loop Detector dataset. It is compared with six baseline methods, with Mean Absolute Error, Mean Absolute Percentage Error, and Root Mean Square Error used as metrics. The results show that Trafficformer not only has higher prediction accuracy, but also can effectively identify key sections, and has great potential in intelligent traffic control optimization and refined traffic resource allocation.</p>\",\"PeriodicalId\":12628,\"journal\":{\"name\":\"Frontiers in Neurorobotics\",\"volume\":\"19 \",\"pages\":\"1527908\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-01-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11799296/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Neurorobotics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.3389/fnbot.2025.1527908\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Neurorobotics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.3389/fnbot.2025.1527908","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

交通预测是各种应用的关键,包括路线优化,信号管理和旅行时间估计。然而,许多现有的预测模型由于其固有的非线性、高维性和复杂的依赖关系而难以准确地捕捉交通数据中的时空模式。为了应对这些挑战,提出了一个基于Transformer框架的短期流量预测模型Trafficformer。该模型首先使用多层感知器从历史交通数据中提取特征,然后通过基于transformer的编码增强空间交互。通过结合路网拓扑结构,空间掩模滤除噪声和不相关的相互作用,提高预测精度。最后,使用另一个多层感知器预测交通速度。在实验中,Trafficformer在西雅图环路检测器数据集上进行了评估。将其与六种基线方法进行比较,以平均绝对误差、平均绝对百分比误差和均方根误差作为度量标准。结果表明,Trafficformer不仅具有较高的预测精度,而且能够有效识别关键路段,在智能交通控制优化和交通资源精细化配置方面具有很大的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Transformer-based short-term traffic forecasting model considering traffic spatiotemporal correlation.

Traffic forecasting is crucial for a variety of applications, including route optimization, signal management, and travel time estimation. However, many existing prediction models struggle to accurately capture the spatiotemporal patterns in traffic data due to its inherent nonlinearity, high dimensionality, and complex dependencies. To address these challenges, a short-term traffic forecasting model, Trafficformer, is proposed based on the Transformer framework. The model first uses a multilayer perceptron to extract features from historical traffic data, then enhances spatial interactions through Transformer-based encoding. By incorporating road network topology, a spatial mask filters out noise and irrelevant interactions, improving prediction accuracy. Finally, traffic speed is predicted using another multilayer perceptron. In the experiments, Trafficformer is evaluated on the Seattle Loop Detector dataset. It is compared with six baseline methods, with Mean Absolute Error, Mean Absolute Percentage Error, and Root Mean Square Error used as metrics. The results show that Trafficformer not only has higher prediction accuracy, but also can effectively identify key sections, and has great potential in intelligent traffic control optimization and refined traffic resource allocation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Frontiers in Neurorobotics
Frontiers in Neurorobotics COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCER-ROBOTICS
CiteScore
5.20
自引率
6.50%
发文量
250
审稿时长
14 weeks
期刊介绍: Frontiers in Neurorobotics publishes rigorously peer-reviewed research in the science and technology of embodied autonomous neural systems. Specialty Chief Editors Alois C. Knoll and Florian Röhrbein at the Technische Universität München are supported by an outstanding Editorial Board of international experts. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics and the public worldwide. Neural systems include brain-inspired algorithms (e.g. connectionist networks), computational models of biological neural networks (e.g. artificial spiking neural nets, large-scale simulations of neural microcircuits) and actual biological systems (e.g. in vivo and in vitro neural nets). The focus of the journal is the embodiment of such neural systems in artificial software and hardware devices, machines, robots or any other form of physical actuation. This also includes prosthetic devices, brain machine interfaces, wearable systems, micro-machines, furniture, home appliances, as well as systems for managing micro and macro infrastructures. Frontiers in Neurorobotics also aims to publish radically new tools and methods to study plasticity and development of autonomous self-learning systems that are capable of acquiring knowledge in an open-ended manner. Models complemented with experimental studies revealing self-organizing principles of embodied neural systems are welcome. Our journal also publishes on the micro and macro engineering and mechatronics of robotic devices driven by neural systems, as well as studies on the impact that such systems will have on our daily life.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信