基于大细胞激发脉冲神经网络的无人机检测运动特征提取。

IF 2.1 4区 医学 Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Frontiers in Computational Neuroscience Pub Date : 2025-01-22 eCollection Date: 2025-01-01 DOI:10.3389/fncom.2025.1452203
Jiayi Zheng, Yaping Wan, Xin Yang, Hua Zhong, Minghua Du, Gang Wang
{"title":"基于大细胞激发脉冲神经网络的无人机检测运动特征提取。","authors":"Jiayi Zheng, Yaping Wan, Xin Yang, Hua Zhong, Minghua Du, Gang Wang","doi":"10.3389/fncom.2025.1452203","DOIUrl":null,"url":null,"abstract":"<p><p>Traditional object detection methods usually underperform when locating tiny or small drones against complex backgrounds, since the appearance features of the targets and the backgrounds are highly similar. To address this, inspired by the magnocellular motion processing mechanisms, we proposed to utilize the spatial-temporal characteristics of the flying drones based on spiking neural networks, thereby developing the Magno-Spiking Neural Network (MG-SNN) for drone detection. The MG-SNN can learn to identify potential regions of moving targets through motion saliency estimation and subsequently integrates the information into the popular object detection algorithms to design the retinal-inspired spiking neural network module for drone motion extraction and object detection architecture, which integrates motion and spatial features before object detection to enhance detection accuracy. To design and train the MG-SNN, we propose a new backpropagation method called Dynamic Threshold Multi-frame Spike Time Sequence (DT-MSTS), and establish a dataset for the training and validation of MG-SNN, effectively extracting and updating visual motion features. Experimental results in terms of drone detection performance indicate that the incorporation of MG-SNN significantly improves the accuracy of low-altitude drone detection tasks compared to popular small object detection algorithms, acting as a cheap plug-and-play module in detecting small flying targets against complex backgrounds.</p>","PeriodicalId":12363,"journal":{"name":"Frontiers in Computational Neuroscience","volume":"19 ","pages":"1452203"},"PeriodicalIF":2.1000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11794278/pdf/","citationCount":"0","resultStr":"{\"title\":\"Motion feature extraction using magnocellular-inspired spiking neural networks for drone detection.\",\"authors\":\"Jiayi Zheng, Yaping Wan, Xin Yang, Hua Zhong, Minghua Du, Gang Wang\",\"doi\":\"10.3389/fncom.2025.1452203\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Traditional object detection methods usually underperform when locating tiny or small drones against complex backgrounds, since the appearance features of the targets and the backgrounds are highly similar. To address this, inspired by the magnocellular motion processing mechanisms, we proposed to utilize the spatial-temporal characteristics of the flying drones based on spiking neural networks, thereby developing the Magno-Spiking Neural Network (MG-SNN) for drone detection. The MG-SNN can learn to identify potential regions of moving targets through motion saliency estimation and subsequently integrates the information into the popular object detection algorithms to design the retinal-inspired spiking neural network module for drone motion extraction and object detection architecture, which integrates motion and spatial features before object detection to enhance detection accuracy. To design and train the MG-SNN, we propose a new backpropagation method called Dynamic Threshold Multi-frame Spike Time Sequence (DT-MSTS), and establish a dataset for the training and validation of MG-SNN, effectively extracting and updating visual motion features. Experimental results in terms of drone detection performance indicate that the incorporation of MG-SNN significantly improves the accuracy of low-altitude drone detection tasks compared to popular small object detection algorithms, acting as a cheap plug-and-play module in detecting small flying targets against complex backgrounds.</p>\",\"PeriodicalId\":12363,\"journal\":{\"name\":\"Frontiers in Computational Neuroscience\",\"volume\":\"19 \",\"pages\":\"1452203\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11794278/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Computational Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3389/fncom.2025.1452203\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Computational Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fncom.2025.1452203","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

由于目标的外观特征与背景高度相似,传统的目标检测方法在定位复杂背景下的微型或小型无人机时往往表现不佳。为了解决这一问题,受磁细胞运动处理机制的启发,我们提出利用基于脉冲神经网络的无人机飞行时空特征,从而开发用于无人机检测的磁脉冲神经网络(MG-SNN)。MG-SNN可以通过运动显著性估计学习识别运动目标的潜在区域,然后将这些信息整合到流行的目标检测算法中,设计视网膜启发的尖峰神经网络模块,用于无人机运动提取和目标检测架构,在目标检测之前将运动和空间特征融合在一起,提高检测精度。为了设计和训练MG-SNN,我们提出了一种新的反向传播方法——动态阈值多帧峰值时间序列(DT-MSTS),并建立了用于训练和验证MG-SNN的数据集,有效地提取和更新视觉运动特征。在无人机检测性能方面的实验结果表明,与流行的小目标检测算法相比,MG-SNN的引入显著提高了低空无人机检测任务的精度,在复杂背景下的小型飞行目标检测中可作为一种廉价的即插即用模块。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Motion feature extraction using magnocellular-inspired spiking neural networks for drone detection.

Traditional object detection methods usually underperform when locating tiny or small drones against complex backgrounds, since the appearance features of the targets and the backgrounds are highly similar. To address this, inspired by the magnocellular motion processing mechanisms, we proposed to utilize the spatial-temporal characteristics of the flying drones based on spiking neural networks, thereby developing the Magno-Spiking Neural Network (MG-SNN) for drone detection. The MG-SNN can learn to identify potential regions of moving targets through motion saliency estimation and subsequently integrates the information into the popular object detection algorithms to design the retinal-inspired spiking neural network module for drone motion extraction and object detection architecture, which integrates motion and spatial features before object detection to enhance detection accuracy. To design and train the MG-SNN, we propose a new backpropagation method called Dynamic Threshold Multi-frame Spike Time Sequence (DT-MSTS), and establish a dataset for the training and validation of MG-SNN, effectively extracting and updating visual motion features. Experimental results in terms of drone detection performance indicate that the incorporation of MG-SNN significantly improves the accuracy of low-altitude drone detection tasks compared to popular small object detection algorithms, acting as a cheap plug-and-play module in detecting small flying targets against complex backgrounds.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Frontiers in Computational Neuroscience
Frontiers in Computational Neuroscience MATHEMATICAL & COMPUTATIONAL BIOLOGY-NEUROSCIENCES
CiteScore
5.30
自引率
3.10%
发文量
166
审稿时长
6-12 weeks
期刊介绍: Frontiers in Computational Neuroscience is a first-tier electronic journal devoted to promoting theoretical modeling of brain function and fostering interdisciplinary interactions between theoretical and experimental neuroscience. Progress in understanding the amazing capabilities of the brain is still limited, and we believe that it will only come with deep theoretical thinking and mutually stimulating cooperation between different disciplines and approaches. We therefore invite original contributions on a wide range of topics that present the fruits of such cooperation, or provide stimuli for future alliances. We aim to provide an interactive forum for cutting-edge theoretical studies of the nervous system, and for promulgating the best theoretical research to the broader neuroscience community. Models of all styles and at all levels are welcome, from biophysically motivated realistic simulations of neurons and synapses to high-level abstract models of inference and decision making. While the journal is primarily focused on theoretically based and driven research, we welcome experimental studies that validate and test theoretical conclusions. Also: comp neuro
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信