澳大利亚大堡礁珊瑚礁鱼类微生物组成的有限相似性。

IF 3.5 3区 生物学 Q2 MICROBIOLOGY
Vincenzo A Costa, David R Bellwood, Jonathon C O Mifsud, Jemma L Geoghegan, Erin Harvey, Edward C Holmes
{"title":"澳大利亚大堡礁珊瑚礁鱼类微生物组成的有限相似性。","authors":"Vincenzo A Costa, David R Bellwood, Jonathon C O Mifsud, Jemma L Geoghegan, Erin Harvey, Edward C Holmes","doi":"10.1093/femsec/fiaf016","DOIUrl":null,"url":null,"abstract":"<p><p>Reef fishes exhibit enormous biodiversity within a highly interactive ecosystem. Relatively little is known about the diversity and evolution of microbial species associated with reef fish, even though this may provide valuable insights into the factors that shape microbial communities. Through metatranscriptomic sequencing, we characterized the viruses, bacteria, and single-celled eukaryotes from 126 reef fish species inhabiting Lizard Island and Orpheus Island on the Great Barrier Reef, Australia. We assessed whether microbial communities differed between islands that are separated by 450 km, and to what extent fish viruses emerge in new hosts. Despite strong ecological interactions within the species-rich reef environment, and the presence of the same families of viruses on both islands, there was minimal evidence for the presence of individual viruses shared among fish species, reflecting low levels of cross-species transmission. Among bacteria, we identified the opportunistic bacterial pathogen Photobacterium damselae in apparently healthy cardinalfish species from both islands, indicating that these fish species are natural reservoirs. These data suggest that reef fishes have microbial-host associations that arose prior to the formation of the Great Barrier Reef, likely leading to strong host barriers to cross-species transmission and hence infectious disease emergence.</p>","PeriodicalId":12312,"journal":{"name":"FEMS microbiology ecology","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11879539/pdf/","citationCount":"0","resultStr":"{\"title\":\"Limited similarity in microbial composition among coral reef fishes from the Great Barrier Reef, Australia.\",\"authors\":\"Vincenzo A Costa, David R Bellwood, Jonathon C O Mifsud, Jemma L Geoghegan, Erin Harvey, Edward C Holmes\",\"doi\":\"10.1093/femsec/fiaf016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Reef fishes exhibit enormous biodiversity within a highly interactive ecosystem. Relatively little is known about the diversity and evolution of microbial species associated with reef fish, even though this may provide valuable insights into the factors that shape microbial communities. Through metatranscriptomic sequencing, we characterized the viruses, bacteria, and single-celled eukaryotes from 126 reef fish species inhabiting Lizard Island and Orpheus Island on the Great Barrier Reef, Australia. We assessed whether microbial communities differed between islands that are separated by 450 km, and to what extent fish viruses emerge in new hosts. Despite strong ecological interactions within the species-rich reef environment, and the presence of the same families of viruses on both islands, there was minimal evidence for the presence of individual viruses shared among fish species, reflecting low levels of cross-species transmission. Among bacteria, we identified the opportunistic bacterial pathogen Photobacterium damselae in apparently healthy cardinalfish species from both islands, indicating that these fish species are natural reservoirs. These data suggest that reef fishes have microbial-host associations that arose prior to the formation of the Great Barrier Reef, likely leading to strong host barriers to cross-species transmission and hence infectious disease emergence.</p>\",\"PeriodicalId\":12312,\"journal\":{\"name\":\"FEMS microbiology ecology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-02-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11879539/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"FEMS microbiology ecology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/femsec/fiaf016\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"FEMS microbiology ecology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/femsec/fiaf016","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

珊瑚鱼在一个高度互动的生态系统中表现出巨大的生物多样性。相对而言,人们对与珊瑚鱼相关的微生物物种的多样性和进化知之甚少,尽管这可能为形成微生物群落的因素提供有价值的见解。通过亚转录组测序,我们对生活在澳大利亚大堡礁蜥蜴岛和俄耳甫斯岛的126种礁鱼的病毒、细菌和单细胞真核生物进行了表征。我们评估了相隔450公里的岛屿之间的微生物群落是否存在差异,以及鱼类病毒在新宿主中出现的程度。尽管在物种丰富的珊瑚礁环境中存在强烈的生态相互作用,而且两个岛屿上都存在同一科病毒,但很少有证据表明存在鱼类之间共享的单个病毒,这反映出跨物种传播的水平很低。在细菌中,我们在两岛明显健康的红鱼物种中发现了机会致病菌光杆菌(Photobacterium damselae),表明这些鱼类是天然宿主。这些数据表明,在大堡礁形成之前,珊瑚鱼就有微生物与宿主的关联,这可能导致宿主对跨物种传播的强大障碍,从而导致传染病的出现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Limited similarity in microbial composition among coral reef fishes from the Great Barrier Reef, Australia.

Reef fishes exhibit enormous biodiversity within a highly interactive ecosystem. Relatively little is known about the diversity and evolution of microbial species associated with reef fish, even though this may provide valuable insights into the factors that shape microbial communities. Through metatranscriptomic sequencing, we characterized the viruses, bacteria, and single-celled eukaryotes from 126 reef fish species inhabiting Lizard Island and Orpheus Island on the Great Barrier Reef, Australia. We assessed whether microbial communities differed between islands that are separated by 450 km, and to what extent fish viruses emerge in new hosts. Despite strong ecological interactions within the species-rich reef environment, and the presence of the same families of viruses on both islands, there was minimal evidence for the presence of individual viruses shared among fish species, reflecting low levels of cross-species transmission. Among bacteria, we identified the opportunistic bacterial pathogen Photobacterium damselae in apparently healthy cardinalfish species from both islands, indicating that these fish species are natural reservoirs. These data suggest that reef fishes have microbial-host associations that arose prior to the formation of the Great Barrier Reef, likely leading to strong host barriers to cross-species transmission and hence infectious disease emergence.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
FEMS microbiology ecology
FEMS microbiology ecology 生物-微生物学
CiteScore
7.50
自引率
2.40%
发文量
132
审稿时长
3 months
期刊介绍: FEMS Microbiology Ecology aims to ensure efficient publication of high-quality papers that are original and provide a significant contribution to the understanding of microbial ecology. The journal contains Research Articles and MiniReviews on fundamental aspects of the ecology of microorganisms in natural soil, aquatic and atmospheric habitats, including extreme environments, and in artificial or managed environments. Research papers on pure cultures and in the areas of plant pathology and medical, food or veterinary microbiology will be published where they provide valuable generic information on microbial ecology. Papers can deal with culturable and non-culturable forms of any type of microorganism: bacteria, archaea, filamentous fungi, yeasts, protozoa, cyanobacteria, algae or viruses. In addition, the journal will publish Perspectives, Current Opinion and Controversy Articles, Commentaries and Letters to the Editor on topical issues in microbial ecology. - Application of ecological theory to microbial ecology - Interactions and signalling between microorganisms and with plants and animals - Interactions between microorganisms and their physicochemical enviornment - Microbial aspects of biogeochemical cycles and processes - Microbial community ecology - Phylogenetic and functional diversity of microbial communities - Evolutionary biology of microorganisms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信