欧洲野猪猪胚和出生后新皮层突触蛋白的表达和树突棘的发育。

IF 2.7 3区 医学 Q1 ANATOMY & MORPHOLOGY
Eric Sobierajski, Katrin Czubay, Marc-André R Schmidt, Sebastian Wiedenski, Sarah Rettschlag, Christa Beemelmans, Christoph Beemelmans, Petra Wahle
{"title":"欧洲野猪猪胚和出生后新皮层突触蛋白的表达和树突棘的发育。","authors":"Eric Sobierajski, Katrin Czubay, Marc-André R Schmidt, Sebastian Wiedenski, Sarah Rettschlag, Christa Beemelmans, Christoph Beemelmans, Petra Wahle","doi":"10.1007/s00429-025-02900-0","DOIUrl":null,"url":null,"abstract":"<p><p>Synapse formation is a critical step in neuronal development. Current knowledge is largely based on altricial rodents where synapse formation and maturation proceed largely postnatally. In precocially born mammals such as guinea pig presynapse and spine formation start well before birth. Here, we analysed the developmental expression of proteins associated with synapse formation and maturation together with the development of basal dendritic spines of pyramidal neurons of visual and somatosensory cortex of the pig, an emerging translational model for human neurodegenerative disorders. A total of 23 selected proteins was quantified with Western blots. Most were detectable from midgestation embryonal day (E) 65 onwards. About half reached the expression level seen at postnatal day (P) 90 pig already two weeks before birth (gestation 114 days) in somatosensory, albeit not yet in visual cortex. For instance, major molecular components of synaptic plasticity such as GluN2B, CamKIIα, α-actinin-2, synaptopodin and T286 phosphorylated CamKIIα were expressed at E100 in somatosensory cortex. Dendritic spine type quantification with DiI-labeled material revealed an increase of total dendritic protrusions from E70 onwards. The increase was steepest in somatosensory cortex which had, at E110, a proportion of mushroom spines equal to the proportion present at P90. Together, matching the ungulate life history, a rapid development of functional synaptic connectivity in prenatal somatosensory cortex serves the somatomotor abilities essentially required by the newborn nest-fledgling.</p>","PeriodicalId":9145,"journal":{"name":"Brain Structure & Function","volume":"230 2","pages":"38"},"PeriodicalIF":2.7000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11805786/pdf/","citationCount":"0","resultStr":"{\"title\":\"Expression of synaptic proteins and development of dendritic spines in fetal and postnatal neocortex of the pig, the European wild boar Sus scrofa.\",\"authors\":\"Eric Sobierajski, Katrin Czubay, Marc-André R Schmidt, Sebastian Wiedenski, Sarah Rettschlag, Christa Beemelmans, Christoph Beemelmans, Petra Wahle\",\"doi\":\"10.1007/s00429-025-02900-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Synapse formation is a critical step in neuronal development. Current knowledge is largely based on altricial rodents where synapse formation and maturation proceed largely postnatally. In precocially born mammals such as guinea pig presynapse and spine formation start well before birth. Here, we analysed the developmental expression of proteins associated with synapse formation and maturation together with the development of basal dendritic spines of pyramidal neurons of visual and somatosensory cortex of the pig, an emerging translational model for human neurodegenerative disorders. A total of 23 selected proteins was quantified with Western blots. Most were detectable from midgestation embryonal day (E) 65 onwards. About half reached the expression level seen at postnatal day (P) 90 pig already two weeks before birth (gestation 114 days) in somatosensory, albeit not yet in visual cortex. For instance, major molecular components of synaptic plasticity such as GluN2B, CamKIIα, α-actinin-2, synaptopodin and T286 phosphorylated CamKIIα were expressed at E100 in somatosensory cortex. Dendritic spine type quantification with DiI-labeled material revealed an increase of total dendritic protrusions from E70 onwards. The increase was steepest in somatosensory cortex which had, at E110, a proportion of mushroom spines equal to the proportion present at P90. Together, matching the ungulate life history, a rapid development of functional synaptic connectivity in prenatal somatosensory cortex serves the somatomotor abilities essentially required by the newborn nest-fledgling.</p>\",\"PeriodicalId\":9145,\"journal\":{\"name\":\"Brain Structure & Function\",\"volume\":\"230 2\",\"pages\":\"38\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-02-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11805786/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brain Structure & Function\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s00429-025-02900-0\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ANATOMY & MORPHOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Structure & Function","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00429-025-02900-0","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ANATOMY & MORPHOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

突触的形成是神经元发育的关键步骤。目前的知识主要是基于晚熟啮齿动物,其中突触的形成和成熟主要是在出生后进行的。在早熟出生的哺乳动物中,如豚鼠,突触前和脊椎的形成早在出生前就开始了。在这里,我们分析了与突触形成和成熟相关的蛋白质的发育表达,以及猪视觉和体感皮层锥体神经元基底树突棘的发育,这是一种新兴的人类神经退行性疾病的转化模型。Western blots对23个选定的蛋白进行定量。大多数在妊娠中期胚胎日(E) 65以后可检测到。大约一半的体感觉细胞在出生前两周(妊娠114天)就达到了出生后90天(P)猪的表达水平,尽管还没有达到视觉皮层的表达水平。例如,突触可塑性的主要分子成分GluN2B、CamKIIα、α- actiin -2、synaptopodin和T286磷酸化的CamKIIα在体感皮层E100处表达。用dii标记的材料进行树突棘型定量分析显示,从E70开始,树突突总数增加。这种增加在体感觉皮层中最为明显,在E110时,蘑菇棘的比例等于P90时的比例。总之,与有蹄类动物的生活史相匹配,产前躯体感觉皮层中功能性突触连接的快速发展服务于初出茅庐的新生儿所需的躯体运动能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Expression of synaptic proteins and development of dendritic spines in fetal and postnatal neocortex of the pig, the European wild boar Sus scrofa.

Synapse formation is a critical step in neuronal development. Current knowledge is largely based on altricial rodents where synapse formation and maturation proceed largely postnatally. In precocially born mammals such as guinea pig presynapse and spine formation start well before birth. Here, we analysed the developmental expression of proteins associated with synapse formation and maturation together with the development of basal dendritic spines of pyramidal neurons of visual and somatosensory cortex of the pig, an emerging translational model for human neurodegenerative disorders. A total of 23 selected proteins was quantified with Western blots. Most were detectable from midgestation embryonal day (E) 65 onwards. About half reached the expression level seen at postnatal day (P) 90 pig already two weeks before birth (gestation 114 days) in somatosensory, albeit not yet in visual cortex. For instance, major molecular components of synaptic plasticity such as GluN2B, CamKIIα, α-actinin-2, synaptopodin and T286 phosphorylated CamKIIα were expressed at E100 in somatosensory cortex. Dendritic spine type quantification with DiI-labeled material revealed an increase of total dendritic protrusions from E70 onwards. The increase was steepest in somatosensory cortex which had, at E110, a proportion of mushroom spines equal to the proportion present at P90. Together, matching the ungulate life history, a rapid development of functional synaptic connectivity in prenatal somatosensory cortex serves the somatomotor abilities essentially required by the newborn nest-fledgling.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Brain Structure & Function
Brain Structure & Function 医学-解剖学与形态学
CiteScore
6.00
自引率
6.50%
发文量
168
审稿时长
8 months
期刊介绍: Brain Structure & Function publishes research that provides insight into brain structure−function relationships. Studies published here integrate data spanning from molecular, cellular, developmental, and systems architecture to the neuroanatomy of behavior and cognitive functions. Manuscripts with focus on the spinal cord or the peripheral nervous system are not accepted for publication. Manuscripts with focus on diseases, animal models of diseases, or disease-related mechanisms are only considered for publication, if the findings provide novel insight into the organization and mechanisms of normal brain structure and function.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信