靶向抗纤维化治疗的巨噬细胞微肺芯片。

IF 8.2 2区 医学 Q1 ENGINEERING, BIOMEDICAL
Jingjing Xia, Ruming Dong, Yongcong Fang, Jiabin Guo, Zhuo Xiong, Ting Zhang, Wei Sun
{"title":"靶向抗纤维化治疗的巨噬细胞微肺芯片。","authors":"Jingjing Xia, Ruming Dong, Yongcong Fang, Jiabin Guo, Zhuo Xiong, Ting Zhang, Wei Sun","doi":"10.1088/1758-5090/adb338","DOIUrl":null,"url":null,"abstract":"<p><p>Idiopathic pulmonary fibrosis (IPF) is a lethal lung disease of unknown etiology. Macrophages are implicated in the fibrotic process, but exhibit remarkable plasticity in the activated immune environment<i>in vivo</i>, presenting significant challenges as therapeutic targets. To explore the influence of macrophages on IPF and develop macrophage-targeted therapies, we engineered a micro-lung chip with a lung epithelium-interstitium tissue unit to establish a controlled immune environment containing only macrophages. We discovered that macrophages exacerbated inflammation and fibrosis by comparing microchips treated with bleomycin (BLM) in the presence and absence of macrophages. Based on the duration of BLM treatment, we established pathological models corresponding to inflammation and fibrosis stages. Transcriptome analysis revealed that activation of the PI3K-AKT signalling pathway facilitates the transition from inflammation to fibrosis. However, LY294002, a PI3K inhibitor, not only suppressed fibrosis and decreased the accumulation of M2 macrophages but also intensified the severity of inflammation. These findings suggest that macrophages play a pivotal role in the potential development at the tissue level. The micro-lung chip co-cultured with macrophages holds significant potential for exploring the pathological progression of IPF and elucidating the mechanisms of anti-fibrotic drugs.</p>","PeriodicalId":8964,"journal":{"name":"Biofabrication","volume":" ","pages":""},"PeriodicalIF":8.2000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A micro-lung chip with macrophages for targeted anti-fibrotic therapy.\",\"authors\":\"Jingjing Xia, Ruming Dong, Yongcong Fang, Jiabin Guo, Zhuo Xiong, Ting Zhang, Wei Sun\",\"doi\":\"10.1088/1758-5090/adb338\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Idiopathic pulmonary fibrosis (IPF) is a lethal lung disease of unknown etiology. Macrophages are implicated in the fibrotic process, but exhibit remarkable plasticity in the activated immune environment<i>in vivo</i>, presenting significant challenges as therapeutic targets. To explore the influence of macrophages on IPF and develop macrophage-targeted therapies, we engineered a micro-lung chip with a lung epithelium-interstitium tissue unit to establish a controlled immune environment containing only macrophages. We discovered that macrophages exacerbated inflammation and fibrosis by comparing microchips treated with bleomycin (BLM) in the presence and absence of macrophages. Based on the duration of BLM treatment, we established pathological models corresponding to inflammation and fibrosis stages. Transcriptome analysis revealed that activation of the PI3K-AKT signalling pathway facilitates the transition from inflammation to fibrosis. However, LY294002, a PI3K inhibitor, not only suppressed fibrosis and decreased the accumulation of M2 macrophages but also intensified the severity of inflammation. These findings suggest that macrophages play a pivotal role in the potential development at the tissue level. The micro-lung chip co-cultured with macrophages holds significant potential for exploring the pathological progression of IPF and elucidating the mechanisms of anti-fibrotic drugs.</p>\",\"PeriodicalId\":8964,\"journal\":{\"name\":\"Biofabrication\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2025-02-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biofabrication\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1088/1758-5090/adb338\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biofabrication","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1758-5090/adb338","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

特发性肺纤维化(IPF)是一种病因不明的致死性肺部疾病。巨噬细胞参与纤维化过程,但在体内活化的免疫环境中表现出显著的可塑性,这对作为治疗靶点提出了重大挑战。为了探索巨噬细胞对IPF的影响并开发巨噬细胞靶向治疗,我们设计了一种带有肺上皮间质组织单元的微肺芯片,建立了一个仅含有巨噬细胞的受控免疫环境。通过比较博莱霉素处理的微芯片在存在和不存在巨噬细胞的情况下,我们发现巨噬细胞加剧了炎症和纤维化。根据博来霉素治疗时间,建立相应炎症和纤维化分期的病理模型。转录组分析显示,PI3K-AKT信号通路的激活促进了从炎症到纤维化的转变。而PI3K抑制剂LY294002在抑制纤维化、降低M2巨噬细胞聚集的同时,还会加重炎症的严重程度。这些发现表明巨噬细胞在组织水平的潜在发育中起着关键作用。与巨噬细胞共培养的微肺芯片在探索IPF的病理进展和阐明抗纤维化药物的作用机制方面具有重要的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A micro-lung chip with macrophages for targeted anti-fibrotic therapy.

Idiopathic pulmonary fibrosis (IPF) is a lethal lung disease of unknown etiology. Macrophages are implicated in the fibrotic process, but exhibit remarkable plasticity in the activated immune environmentin vivo, presenting significant challenges as therapeutic targets. To explore the influence of macrophages on IPF and develop macrophage-targeted therapies, we engineered a micro-lung chip with a lung epithelium-interstitium tissue unit to establish a controlled immune environment containing only macrophages. We discovered that macrophages exacerbated inflammation and fibrosis by comparing microchips treated with bleomycin (BLM) in the presence and absence of macrophages. Based on the duration of BLM treatment, we established pathological models corresponding to inflammation and fibrosis stages. Transcriptome analysis revealed that activation of the PI3K-AKT signalling pathway facilitates the transition from inflammation to fibrosis. However, LY294002, a PI3K inhibitor, not only suppressed fibrosis and decreased the accumulation of M2 macrophages but also intensified the severity of inflammation. These findings suggest that macrophages play a pivotal role in the potential development at the tissue level. The micro-lung chip co-cultured with macrophages holds significant potential for exploring the pathological progression of IPF and elucidating the mechanisms of anti-fibrotic drugs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biofabrication
Biofabrication ENGINEERING, BIOMEDICAL-MATERIALS SCIENCE, BIOMATERIALS
CiteScore
17.40
自引率
3.30%
发文量
118
审稿时长
2 months
期刊介绍: Biofabrication is dedicated to advancing cutting-edge research on the utilization of cells, proteins, biological materials, and biomaterials as fundamental components for the construction of biological systems and/or therapeutic products. Additionally, it proudly serves as the official journal of the International Society for Biofabrication (ISBF).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信