{"title":"Global solutions for semilinear parabolic evolution problems with Hölder continuous nonlinearities","authors":"Bogdan-Vasile Matioc, Christoph Walker","doi":"10.1112/blms.13206","DOIUrl":null,"url":null,"abstract":"<p>It is shown that semilinear parabolic evolution equations <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>u</mi>\n <mo>′</mo>\n </msup>\n <mo>=</mo>\n <mi>A</mi>\n <mi>u</mi>\n <mo>+</mo>\n <mi>f</mi>\n <mrow>\n <mo>(</mo>\n <mi>t</mi>\n <mo>,</mo>\n <mi>u</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$u^{\\prime }=Au+f(t,u)$</annotation>\n </semantics></math> featuring Hölder continuous nonlinearities <span></span><math>\n <semantics>\n <mrow>\n <mi>f</mi>\n <mo>=</mo>\n <mi>f</mi>\n <mo>(</mo>\n <mi>t</mi>\n <mo>,</mo>\n <mi>u</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$ f=f(t,u)$</annotation>\n </semantics></math> with at most linear growth possess global strong solutions for a general class of initial data. The abstract results are applied to a recent model describing front propagation in bushfires and in the context of a reaction–diffusion system.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 2","pages":"444-462"},"PeriodicalIF":0.8000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.13206","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/blms.13206","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
研究表明,半线性抛物线演化方程 u ′ = A u + f ( t , u ) $u^{/prime }=Au+f(t,u)$ 具有霍尔德连续非线性 f = f ( t , u ) $ f=f(t,u)$ 且最多具有线性增长,对于一般初始数据具有全局强解。这些抽象结果被应用于一个描述灌木林火灾前沿传播的最新模型,以及一个反应扩散系统。
Global solutions for semilinear parabolic evolution problems with Hölder continuous nonlinearities
It is shown that semilinear parabolic evolution equations featuring Hölder continuous nonlinearities with at most linear growth possess global strong solutions for a general class of initial data. The abstract results are applied to a recent model describing front propagation in bushfires and in the context of a reaction–diffusion system.