亚阈值区域GSCG双栅MOSFET的低频噪声分析

IF 1.6 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Srikrishna Bardhan, Pradipta Kumar Jena, Sarita Misra, Sanghamitra Das, Sudhansu Kumar Pati
{"title":"亚阈值区域GSCG双栅MOSFET的低频噪声分析","authors":"Srikrishna Bardhan,&nbsp;Pradipta Kumar Jena,&nbsp;Sarita Misra,&nbsp;Sanghamitra Das,&nbsp;Sudhansu Kumar Pati","doi":"10.1002/jnm.70025","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>This paper presents the noise analysis of double-gate MOSFETs with gate stacking and channel grading (GSCG). In particular, the low-frequency noise, flicker noise, or thermal noise power spectral densities are presented by varying different geometrical parameters of the device, such as the length and thickness of the channel (<i>L</i> and <i>t</i><sub>si</sub>, respectively), and the thickness of the gate-oxide and high-<i>k</i> insulating material (<i>t</i><sub>1</sub> and <i>t</i><sub>2</sub>, respectively) in the subthreshold region. Prior to developing the mathematical formulations for flicker noise and thermal noise PSDs, we first propose the analytical models for drain current and inversion charge density. Published experimental results are used to validate the drain current model and flicker noise model (both normalized and unnormalized). The results obtained from the model show excellent matching with the experimental data. Our findings show that the effect of flicker noise decreases as the operating frequency increases. Owing to the reduced carrier mobility in the conducting channel and carrier scattering at the oxide–semiconductor interfaces of the proposed device, the device's performance can be enhanced by lowering the flicker noise level as the channel length and the thicknesses of both insulating materials (SiO<sub>2</sub> and HfO<sub>2</sub>) increase. Similarly, the thermal noise PSD can be reduced by increasing the channel thickness. Our proposed device's flicker and thermal noise study in the subthreshold region points to a possible contender that can be employed for both analog/RF applications and a wide range of frequencies.</p>\n </div>","PeriodicalId":50300,"journal":{"name":"International Journal of Numerical Modelling-Electronic Networks Devices and Fields","volume":"38 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Low-Frequency Noise Analysis of GSCG Double-Gate MOSFET in the Subthreshold Region\",\"authors\":\"Srikrishna Bardhan,&nbsp;Pradipta Kumar Jena,&nbsp;Sarita Misra,&nbsp;Sanghamitra Das,&nbsp;Sudhansu Kumar Pati\",\"doi\":\"10.1002/jnm.70025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>This paper presents the noise analysis of double-gate MOSFETs with gate stacking and channel grading (GSCG). In particular, the low-frequency noise, flicker noise, or thermal noise power spectral densities are presented by varying different geometrical parameters of the device, such as the length and thickness of the channel (<i>L</i> and <i>t</i><sub>si</sub>, respectively), and the thickness of the gate-oxide and high-<i>k</i> insulating material (<i>t</i><sub>1</sub> and <i>t</i><sub>2</sub>, respectively) in the subthreshold region. Prior to developing the mathematical formulations for flicker noise and thermal noise PSDs, we first propose the analytical models for drain current and inversion charge density. Published experimental results are used to validate the drain current model and flicker noise model (both normalized and unnormalized). The results obtained from the model show excellent matching with the experimental data. Our findings show that the effect of flicker noise decreases as the operating frequency increases. Owing to the reduced carrier mobility in the conducting channel and carrier scattering at the oxide–semiconductor interfaces of the proposed device, the device's performance can be enhanced by lowering the flicker noise level as the channel length and the thicknesses of both insulating materials (SiO<sub>2</sub> and HfO<sub>2</sub>) increase. Similarly, the thermal noise PSD can be reduced by increasing the channel thickness. Our proposed device's flicker and thermal noise study in the subthreshold region points to a possible contender that can be employed for both analog/RF applications and a wide range of frequencies.</p>\\n </div>\",\"PeriodicalId\":50300,\"journal\":{\"name\":\"International Journal of Numerical Modelling-Electronic Networks Devices and Fields\",\"volume\":\"38 1\",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2025-02-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Numerical Modelling-Electronic Networks Devices and Fields\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jnm.70025\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Numerical Modelling-Electronic Networks Devices and Fields","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jnm.70025","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了栅极叠加和通道分级(GSCG)双栅mosfet的噪声分析。特别是,通过改变器件的不同几何参数,如通道的长度和厚度(分别为L和tsi),以及栅极氧化物和高k绝缘材料的厚度(分别为t1和t2),在亚阈值区域呈现低频噪声、闪烁噪声或热噪声功率谱密度。在建立闪烁噪声和热噪声psd的数学公式之前,我们首先提出了漏极电流和反转电荷密度的分析模型。利用已发表的实验结果验证了漏极电流模型和闪烁噪声模型(归一化和非归一化)。模型计算结果与实验数据吻合良好。研究结果表明,闪烁噪声的影响随工作频率的增加而减小。由于该器件在导电通道中的载流子迁移率和氧化物-半导体界面处的载流子散射降低,随着通道长度和绝缘材料(SiO2和HfO2)厚度的增加,可以通过降低闪烁噪声水平来提高器件的性能。同样地,热噪声PSD可以通过增加通道厚度来降低。我们提出的器件在亚阈值区域的闪烁和热噪声研究指出了一种可能的竞争者,可以用于模拟/RF应用和广泛的频率范围。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Low-Frequency Noise Analysis of GSCG Double-Gate MOSFET in the Subthreshold Region

This paper presents the noise analysis of double-gate MOSFETs with gate stacking and channel grading (GSCG). In particular, the low-frequency noise, flicker noise, or thermal noise power spectral densities are presented by varying different geometrical parameters of the device, such as the length and thickness of the channel (L and tsi, respectively), and the thickness of the gate-oxide and high-k insulating material (t1 and t2, respectively) in the subthreshold region. Prior to developing the mathematical formulations for flicker noise and thermal noise PSDs, we first propose the analytical models for drain current and inversion charge density. Published experimental results are used to validate the drain current model and flicker noise model (both normalized and unnormalized). The results obtained from the model show excellent matching with the experimental data. Our findings show that the effect of flicker noise decreases as the operating frequency increases. Owing to the reduced carrier mobility in the conducting channel and carrier scattering at the oxide–semiconductor interfaces of the proposed device, the device's performance can be enhanced by lowering the flicker noise level as the channel length and the thicknesses of both insulating materials (SiO2 and HfO2) increase. Similarly, the thermal noise PSD can be reduced by increasing the channel thickness. Our proposed device's flicker and thermal noise study in the subthreshold region points to a possible contender that can be employed for both analog/RF applications and a wide range of frequencies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.60
自引率
6.20%
发文量
101
审稿时长
>12 weeks
期刊介绍: Prediction through modelling forms the basis of engineering design. The computational power at the fingertips of the professional engineer is increasing enormously and techniques for computer simulation are changing rapidly. Engineers need models which relate to their design area and which are adaptable to new design concepts. They also need efficient and friendly ways of presenting, viewing and transmitting the data associated with their models. The International Journal of Numerical Modelling: Electronic Networks, Devices and Fields provides a communication vehicle for numerical modelling methods and data preparation methods associated with electrical and electronic circuits and fields. It concentrates on numerical modelling rather than abstract numerical mathematics. Contributions on numerical modelling will cover the entire subject of electrical and electronic engineering. They will range from electrical distribution networks to integrated circuits on VLSI design, and from static electric and magnetic fields through microwaves to optical design. They will also include the use of electrical networks as a modelling medium.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信