土壤性质的细微尺度变化促进杂交栎树本地分类多样性

IF 3.5 2区 生物学 Q1 EVOLUTIONARY BIOLOGY
Felix Zimmermann, Oliver Reutimann, Andri Baltensweiler, Lorenz Walthert, Jill K. Olofsson, Christian Rellstab
{"title":"土壤性质的细微尺度变化促进杂交栎树本地分类多样性","authors":"Felix Zimmermann,&nbsp;Oliver Reutimann,&nbsp;Andri Baltensweiler,&nbsp;Lorenz Walthert,&nbsp;Jill K. Olofsson,&nbsp;Christian Rellstab","doi":"10.1111/eva.70076","DOIUrl":null,"url":null,"abstract":"<p>Although many tree species frequently hybridize and backcross, management decisions in forestry and nature conservation are usually concentrated on pure species. Therefore, understanding which environmental factors drive the distribution and admixture of tree species on a local stand scale is of great interest to support decision-making in the establishment and management of resilient forests. Here, we extensively sampled a mixed stand of hybridizing white oaks (<i>Quercus petraea</i> and <i>Q. pubescens</i>) near Lake Neuchâtel (Switzerland), where limestone and glacier moraine geologies coexist in proximity, to test whether micro-environmental conditions can predict taxonomic distribution and genetic admixture. We collected DNA from bud tissue, individual soil samples, and extracted high-resolution topographic data for 385 oak trees. We used 50 species-discriminatory single nucleotide polymorphism (SNP) markers to determine the taxonomic composition and admixture levels of individual trees and tested their association with micro-environmental conditions. We show that the trees' taxonomic distribution can be explained mainly by geographic position, soil pH, and potential rooting depth, a proxy for soil water availability. We found that admixed individuals tend to grow in habitats that are characteristic of the more drought-tolerant species <i>Q. pubescens</i> rather than in intermediate habitats. Using in situ measurements, we are the first to show that fine-scale variation in soil properties related to pH and water availability potentially drives the distribution of hybridizing tree species in a mixed stand. Microenvironmental variation therefore promotes local taxonomic diversity, facilitates admixture and adaptive introgression, and contributes to the resilience of forests under environmental change. Consequently, species such as white oaks should be managed and protected as a species complex rather than as pure species.</p>","PeriodicalId":168,"journal":{"name":"Evolutionary Applications","volume":"18 2","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/eva.70076","citationCount":"0","resultStr":"{\"title\":\"Fine-Scale Variation in Soil Properties Promotes Local Taxonomic Diversity of Hybridizing Oak Species (Quercus spp.)\",\"authors\":\"Felix Zimmermann,&nbsp;Oliver Reutimann,&nbsp;Andri Baltensweiler,&nbsp;Lorenz Walthert,&nbsp;Jill K. Olofsson,&nbsp;Christian Rellstab\",\"doi\":\"10.1111/eva.70076\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Although many tree species frequently hybridize and backcross, management decisions in forestry and nature conservation are usually concentrated on pure species. Therefore, understanding which environmental factors drive the distribution and admixture of tree species on a local stand scale is of great interest to support decision-making in the establishment and management of resilient forests. Here, we extensively sampled a mixed stand of hybridizing white oaks (<i>Quercus petraea</i> and <i>Q. pubescens</i>) near Lake Neuchâtel (Switzerland), where limestone and glacier moraine geologies coexist in proximity, to test whether micro-environmental conditions can predict taxonomic distribution and genetic admixture. We collected DNA from bud tissue, individual soil samples, and extracted high-resolution topographic data for 385 oak trees. We used 50 species-discriminatory single nucleotide polymorphism (SNP) markers to determine the taxonomic composition and admixture levels of individual trees and tested their association with micro-environmental conditions. We show that the trees' taxonomic distribution can be explained mainly by geographic position, soil pH, and potential rooting depth, a proxy for soil water availability. We found that admixed individuals tend to grow in habitats that are characteristic of the more drought-tolerant species <i>Q. pubescens</i> rather than in intermediate habitats. Using in situ measurements, we are the first to show that fine-scale variation in soil properties related to pH and water availability potentially drives the distribution of hybridizing tree species in a mixed stand. Microenvironmental variation therefore promotes local taxonomic diversity, facilitates admixture and adaptive introgression, and contributes to the resilience of forests under environmental change. Consequently, species such as white oaks should be managed and protected as a species complex rather than as pure species.</p>\",\"PeriodicalId\":168,\"journal\":{\"name\":\"Evolutionary Applications\",\"volume\":\"18 2\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-02-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/eva.70076\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Evolutionary Applications\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/eva.70076\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"EVOLUTIONARY BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Evolutionary Applications","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/eva.70076","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"EVOLUTIONARY BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

虽然许多树种经常杂交和回交,但林业和自然保护中的管理决策通常集中在纯种上。因此,了解哪些环境因素驱动了当地林分尺度上树种的分布和混合,对于支持弹性林的建立和管理决策具有重要意义。在瑞士neuch湖附近,我们对一种杂交白栎树(Quercus pepeea和Q. pubescens)进行了广泛的采样,以测试微环境条件是否可以预测分类分布和遗传混合。我们收集了385棵橡树的芽组织、个体土壤样本的DNA,并提取了高分辨率的地形数据。利用50个具有物种区别的单核苷酸多态性(SNP)标记确定了单株的分类组成和混合水平,并测试了它们与微环境条件的相关性。研究表明,地理位置、土壤pH值和潜在生根深度(土壤水分有效性的代表)可以解释树木的分类分布。我们发现,杂交个体倾向于生长在具有较耐旱性的短毛栎的生境中,而不是在中间生境中。通过原位测量,我们首次证明了与pH值和水分有效性相关的土壤性质的细微变化可能会驱动杂交树种在混交林中的分布。因此,微环境变化促进了当地分类多样性,促进了混合和适应性渗入,并有助于森林在环境变化下的恢复力。因此,像白栎这样的物种应该作为一个物种综合体来管理和保护,而不是作为一个纯粹的物种。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Fine-Scale Variation in Soil Properties Promotes Local Taxonomic Diversity of Hybridizing Oak Species (Quercus spp.)

Fine-Scale Variation in Soil Properties Promotes Local Taxonomic Diversity of Hybridizing Oak Species (Quercus spp.)

Although many tree species frequently hybridize and backcross, management decisions in forestry and nature conservation are usually concentrated on pure species. Therefore, understanding which environmental factors drive the distribution and admixture of tree species on a local stand scale is of great interest to support decision-making in the establishment and management of resilient forests. Here, we extensively sampled a mixed stand of hybridizing white oaks (Quercus petraea and Q. pubescens) near Lake Neuchâtel (Switzerland), where limestone and glacier moraine geologies coexist in proximity, to test whether micro-environmental conditions can predict taxonomic distribution and genetic admixture. We collected DNA from bud tissue, individual soil samples, and extracted high-resolution topographic data for 385 oak trees. We used 50 species-discriminatory single nucleotide polymorphism (SNP) markers to determine the taxonomic composition and admixture levels of individual trees and tested their association with micro-environmental conditions. We show that the trees' taxonomic distribution can be explained mainly by geographic position, soil pH, and potential rooting depth, a proxy for soil water availability. We found that admixed individuals tend to grow in habitats that are characteristic of the more drought-tolerant species Q. pubescens rather than in intermediate habitats. Using in situ measurements, we are the first to show that fine-scale variation in soil properties related to pH and water availability potentially drives the distribution of hybridizing tree species in a mixed stand. Microenvironmental variation therefore promotes local taxonomic diversity, facilitates admixture and adaptive introgression, and contributes to the resilience of forests under environmental change. Consequently, species such as white oaks should be managed and protected as a species complex rather than as pure species.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Evolutionary Applications
Evolutionary Applications 生物-进化生物学
CiteScore
8.50
自引率
7.30%
发文量
175
审稿时长
6 months
期刊介绍: Evolutionary Applications is a fully peer reviewed open access journal. It publishes papers that utilize concepts from evolutionary biology to address biological questions of health, social and economic relevance. Papers are expected to employ evolutionary concepts or methods to make contributions to areas such as (but not limited to): medicine, agriculture, forestry, exploitation and management (fisheries and wildlife), aquaculture, conservation biology, environmental sciences (including climate change and invasion biology), microbiology, and toxicology. All taxonomic groups are covered from microbes, fungi, plants and animals. In order to better serve the community, we also now strongly encourage submissions of papers making use of modern molecular and genetic methods (population and functional genomics, transcriptomics, proteomics, epigenetics, quantitative genetics, association and linkage mapping) to address important questions in any of these disciplines and in an applied evolutionary framework. Theoretical, empirical, synthesis or perspective papers are welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信