关于Cwikel-Lieb-Rozenblum和Lieb-Thirring不等式的一个变分问题

IF 2.2 1区 物理与天体物理 Q1 PHYSICS, MATHEMATICAL
Thiago Carvalho Corso, Tobias Ried
{"title":"关于Cwikel-Lieb-Rozenblum和Lieb-Thirring不等式的一个变分问题","authors":"Thiago Carvalho Corso,&nbsp;Tobias Ried","doi":"10.1007/s00220-024-05216-y","DOIUrl":null,"url":null,"abstract":"<div><p>We explicitly solve a variational problem related to upper bounds on the optimal constants in the Cwikel–Lieb–Rozenblum (CLR) and Lieb–Thirring (LT) inequalities, which has recently been derived in Hundertmark et al. (Invent Math 231:111–167, 2023. https://doi.org/10.1007/s00222-022-01144-7) and Frank et al. (Eur Math Soc 23(8):2583–2600, 2021. https://doi.org/10.1090/pspum/104/01877). We achieve this through a variational characterization of the <span>\\(L^1\\)</span> norm of the Fourier transform of a function and duality, from which we obtain a reformulation in terms of a variant of the Hadamard three lines lemma. By studying Hardy-like spaces of holomorphic functions in a strip in the complex plane, we are able to provide an analytic formula for the minimizers, and use it to get the best possible upper bounds for the optimal constants in the CLR and LT inequalities achievable by the method of Hundertmark et al. (Invent Math 231:111–167, 2023. https://doi.org/10.1007/s00222-022-01144-7) and Frank et al. (Eur Math Soc 23(8):2583–2600, 2021. https://doi.org/10.1090/pspum/104/01877).</p></div>","PeriodicalId":522,"journal":{"name":"Communications in Mathematical Physics","volume":"406 3","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00220-024-05216-y.pdf","citationCount":"0","resultStr":"{\"title\":\"On a Variational Problem Related to the Cwikel–Lieb–Rozenblum and Lieb–Thirring Inequalities\",\"authors\":\"Thiago Carvalho Corso,&nbsp;Tobias Ried\",\"doi\":\"10.1007/s00220-024-05216-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We explicitly solve a variational problem related to upper bounds on the optimal constants in the Cwikel–Lieb–Rozenblum (CLR) and Lieb–Thirring (LT) inequalities, which has recently been derived in Hundertmark et al. (Invent Math 231:111–167, 2023. https://doi.org/10.1007/s00222-022-01144-7) and Frank et al. (Eur Math Soc 23(8):2583–2600, 2021. https://doi.org/10.1090/pspum/104/01877). We achieve this through a variational characterization of the <span>\\\\(L^1\\\\)</span> norm of the Fourier transform of a function and duality, from which we obtain a reformulation in terms of a variant of the Hadamard three lines lemma. By studying Hardy-like spaces of holomorphic functions in a strip in the complex plane, we are able to provide an analytic formula for the minimizers, and use it to get the best possible upper bounds for the optimal constants in the CLR and LT inequalities achievable by the method of Hundertmark et al. (Invent Math 231:111–167, 2023. https://doi.org/10.1007/s00222-022-01144-7) and Frank et al. (Eur Math Soc 23(8):2583–2600, 2021. https://doi.org/10.1090/pspum/104/01877).</p></div>\",\"PeriodicalId\":522,\"journal\":{\"name\":\"Communications in Mathematical Physics\",\"volume\":\"406 3\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-02-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00220-024-05216-y.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00220-024-05216-y\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s00220-024-05216-y","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

我们明确地解决了与Cwikel-Lieb-Rozenblum (CLR)和Lieb-Thirring (LT)不等式中最优常数上界相关的变分问题,该问题最近在Hundertmark等人(Invent Math 231:111-167, 2023)中推导出来。https://doi.org/10.1007/s00222-022-01144-7)和Frank等人(Eur Math Soc 23(8): 2583-2600, 2021。https://doi.org/10.1090/pspum/104/01877)。我们通过对函数和对偶的傅里叶变换的\(L^1\)范数的变分表征来实现这一点,从中我们得到了关于哈达玛三条线引理的一个变体的重新表述。通过研究复平面上条上全纯函数的Hardy-like空间,我们提供了一个最小值的解析公式,并利用它得到了用Hundertmark等人(Invent Math 231:111-167, 2023)的方法可以得到的CLR和LT不等式中最优常数的最佳可能上界。https://doi.org/10.1007/s00222-022-01144-7)和Frank等人(Eur Math Soc 23(8): 2583-2600, 2021。https://doi.org/10.1090/pspum/104/01877)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On a Variational Problem Related to the Cwikel–Lieb–Rozenblum and Lieb–Thirring Inequalities

We explicitly solve a variational problem related to upper bounds on the optimal constants in the Cwikel–Lieb–Rozenblum (CLR) and Lieb–Thirring (LT) inequalities, which has recently been derived in Hundertmark et al. (Invent Math 231:111–167, 2023. https://doi.org/10.1007/s00222-022-01144-7) and Frank et al. (Eur Math Soc 23(8):2583–2600, 2021. https://doi.org/10.1090/pspum/104/01877). We achieve this through a variational characterization of the \(L^1\) norm of the Fourier transform of a function and duality, from which we obtain a reformulation in terms of a variant of the Hadamard three lines lemma. By studying Hardy-like spaces of holomorphic functions in a strip in the complex plane, we are able to provide an analytic formula for the minimizers, and use it to get the best possible upper bounds for the optimal constants in the CLR and LT inequalities achievable by the method of Hundertmark et al. (Invent Math 231:111–167, 2023. https://doi.org/10.1007/s00222-022-01144-7) and Frank et al. (Eur Math Soc 23(8):2583–2600, 2021. https://doi.org/10.1090/pspum/104/01877).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications in Mathematical Physics
Communications in Mathematical Physics 物理-物理:数学物理
CiteScore
4.70
自引率
8.30%
发文量
226
审稿时长
3-6 weeks
期刊介绍: The mission of Communications in Mathematical Physics is to offer a high forum for works which are motivated by the vision and the challenges of modern physics and which at the same time meet the highest mathematical standards.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信