Dariusz Pyka, Adam Kurzawa, Paweł Żochowski, Marcin Bajkowski, Mariusz Magier, Roman Grygoruk, Maciej Roszak, Krzysztof Jamroziak, Mirosław Bocian
{"title":"关于额外车辆爆炸防护的实验和数值研究","authors":"Dariusz Pyka, Adam Kurzawa, Paweł Żochowski, Marcin Bajkowski, Mariusz Magier, Roman Grygoruk, Maciej Roszak, Krzysztof Jamroziak, Mirosław Bocian","doi":"10.1007/s43452-025-01121-w","DOIUrl":null,"url":null,"abstract":"<div><p>The article presents an experimental and numerical study on the effectiveness of an additional shield mounted under the vehicles in reducing the penetration capability of the scattered mines, using the example of the MN-123 mine. For this purpose, the formation of the EFP (explosive formed penetrator) was analyzed for the classic scattered mine system with a double EFP-shaped charge. Then, after validating the numerical results against the experiment for the static tensile test, the authors performed a numerical analysis for a protective structure made of elastomer, placed between the mine and the bottom of the protected vehicle (parallel to the ground surface). Three variants of the thickness of the rubber element from 10 to 30 mm were analyzed in order to determine the impact of the shield thickness on the EFP formation process. In the final phase, the selected system was experimentally tested on a military training ground. The results obtained indicate that the use of analyzed shielding protecting bottom part of vehicles against mines and EFPs can significantly decrease the mine penetration capability. In addition, the use of the smoothed-particle hydrodynamic (SPH) method to describe the formation of the EFP projectile allowed to take into account the highly dynamic nature of the phenomenon. A novelty in the applied study is the use of an elastomeric cover in the immediate vicinity of the mine, which limits the EFP formation process and also limits the speed of the projectile. This is crucial because the key factor determining the penetrating capabilities of EFP is the high kinetic energy of the formed projectile. Based on the research conducted, areas of potential application of this type of covers can be distinguished. These will primarily be all types of heavy, armored vehicles moving in armed conflict zones, exposed to mines/IEDs/EFPs, such as armored infantry fighting vehicles and tanks.</p></div>","PeriodicalId":55474,"journal":{"name":"Archives of Civil and Mechanical Engineering","volume":"25 2","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s43452-025-01121-w.pdf","citationCount":"0","resultStr":"{\"title\":\"Experimental and numerical research on additional vehicles protection against explosives\",\"authors\":\"Dariusz Pyka, Adam Kurzawa, Paweł Żochowski, Marcin Bajkowski, Mariusz Magier, Roman Grygoruk, Maciej Roszak, Krzysztof Jamroziak, Mirosław Bocian\",\"doi\":\"10.1007/s43452-025-01121-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The article presents an experimental and numerical study on the effectiveness of an additional shield mounted under the vehicles in reducing the penetration capability of the scattered mines, using the example of the MN-123 mine. For this purpose, the formation of the EFP (explosive formed penetrator) was analyzed for the classic scattered mine system with a double EFP-shaped charge. Then, after validating the numerical results against the experiment for the static tensile test, the authors performed a numerical analysis for a protective structure made of elastomer, placed between the mine and the bottom of the protected vehicle (parallel to the ground surface). Three variants of the thickness of the rubber element from 10 to 30 mm were analyzed in order to determine the impact of the shield thickness on the EFP formation process. In the final phase, the selected system was experimentally tested on a military training ground. The results obtained indicate that the use of analyzed shielding protecting bottom part of vehicles against mines and EFPs can significantly decrease the mine penetration capability. In addition, the use of the smoothed-particle hydrodynamic (SPH) method to describe the formation of the EFP projectile allowed to take into account the highly dynamic nature of the phenomenon. A novelty in the applied study is the use of an elastomeric cover in the immediate vicinity of the mine, which limits the EFP formation process and also limits the speed of the projectile. This is crucial because the key factor determining the penetrating capabilities of EFP is the high kinetic energy of the formed projectile. Based on the research conducted, areas of potential application of this type of covers can be distinguished. These will primarily be all types of heavy, armored vehicles moving in armed conflict zones, exposed to mines/IEDs/EFPs, such as armored infantry fighting vehicles and tanks.</p></div>\",\"PeriodicalId\":55474,\"journal\":{\"name\":\"Archives of Civil and Mechanical Engineering\",\"volume\":\"25 2\",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-02-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s43452-025-01121-w.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archives of Civil and Mechanical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s43452-025-01121-w\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Civil and Mechanical Engineering","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s43452-025-01121-w","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Experimental and numerical research on additional vehicles protection against explosives
The article presents an experimental and numerical study on the effectiveness of an additional shield mounted under the vehicles in reducing the penetration capability of the scattered mines, using the example of the MN-123 mine. For this purpose, the formation of the EFP (explosive formed penetrator) was analyzed for the classic scattered mine system with a double EFP-shaped charge. Then, after validating the numerical results against the experiment for the static tensile test, the authors performed a numerical analysis for a protective structure made of elastomer, placed between the mine and the bottom of the protected vehicle (parallel to the ground surface). Three variants of the thickness of the rubber element from 10 to 30 mm were analyzed in order to determine the impact of the shield thickness on the EFP formation process. In the final phase, the selected system was experimentally tested on a military training ground. The results obtained indicate that the use of analyzed shielding protecting bottom part of vehicles against mines and EFPs can significantly decrease the mine penetration capability. In addition, the use of the smoothed-particle hydrodynamic (SPH) method to describe the formation of the EFP projectile allowed to take into account the highly dynamic nature of the phenomenon. A novelty in the applied study is the use of an elastomeric cover in the immediate vicinity of the mine, which limits the EFP formation process and also limits the speed of the projectile. This is crucial because the key factor determining the penetrating capabilities of EFP is the high kinetic energy of the formed projectile. Based on the research conducted, areas of potential application of this type of covers can be distinguished. These will primarily be all types of heavy, armored vehicles moving in armed conflict zones, exposed to mines/IEDs/EFPs, such as armored infantry fighting vehicles and tanks.
期刊介绍:
Archives of Civil and Mechanical Engineering (ACME) publishes both theoretical and experimental original research articles which explore or exploit new ideas and techniques in three main areas: structural engineering, mechanics of materials and materials science.
The aim of the journal is to advance science related to structural engineering focusing on structures, machines and mechanical systems. The journal also promotes advancement in the area of mechanics of materials, by publishing most recent findings in elasticity, plasticity, rheology, fatigue and fracture mechanics.
The third area the journal is concentrating on is materials science, with emphasis on metals, composites, etc., their structures and properties as well as methods of evaluation.
In addition to research papers, the Editorial Board welcomes state-of-the-art reviews on specialized topics. All such articles have to be sent to the Editor-in-Chief before submission for pre-submission review process. Only articles approved by the Editor-in-Chief in pre-submission process can be submitted to the journal for further processing. Approval in pre-submission stage doesn''t guarantee acceptance for publication as all papers are subject to a regular referee procedure.