压缩对等离子体嵌入锂原子地面和低洼激发双重态的影响

IF 1.7 4区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Salah Doma, Gamal Roston, Mostafa Ahmed
{"title":"压缩对等离子体嵌入锂原子地面和低洼激发双重态的影响","authors":"Salah Doma,&nbsp;Gamal Roston,&nbsp;Mostafa Ahmed","doi":"10.1007/s00601-025-01981-1","DOIUrl":null,"url":null,"abstract":"<div><p>The variational Monte Carlo method is employed to conduct a comprehensive investigation of the compressed ground and excited states of plasma-embedded lithium atom within impenetrable spherical boxes of varying radii. The study focuses on the low-lying excited doublet states 1<span>\\(s^{{2}}\\)</span><i>ns</i>, 1<span>\\(s^{{2}}n\\)</span>p, and 1<span>\\(s^{{2}}n\\)</span>d, utilizing plasma potentials such as the screened Coulomb (SCP), exponential cosine screened Coulomb (ECSCP), and Hulthén potentials. Energy eigenvalues are determined using appropriate trial wave functions, which account for electron–electron repulsion and spin parts to adhere to the Pauli Exclusion Principle. Moreover, two factors related to the wave function of the compressed system and ECSCP model are considered. The results reveal an intriguing relative ordering for the lithium atom using the three plasma models, with many of the findings being significant contributions yet to be explored.</p></div>","PeriodicalId":556,"journal":{"name":"Few-Body Systems","volume":"66 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00601-025-01981-1.pdf","citationCount":"0","resultStr":"{\"title\":\"Impacts of Compression on the Ground and Low-Lying Excited Doublet States of Plasma-Embedded Lithium Atom\",\"authors\":\"Salah Doma,&nbsp;Gamal Roston,&nbsp;Mostafa Ahmed\",\"doi\":\"10.1007/s00601-025-01981-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The variational Monte Carlo method is employed to conduct a comprehensive investigation of the compressed ground and excited states of plasma-embedded lithium atom within impenetrable spherical boxes of varying radii. The study focuses on the low-lying excited doublet states 1<span>\\\\(s^{{2}}\\\\)</span><i>ns</i>, 1<span>\\\\(s^{{2}}n\\\\)</span>p, and 1<span>\\\\(s^{{2}}n\\\\)</span>d, utilizing plasma potentials such as the screened Coulomb (SCP), exponential cosine screened Coulomb (ECSCP), and Hulthén potentials. Energy eigenvalues are determined using appropriate trial wave functions, which account for electron–electron repulsion and spin parts to adhere to the Pauli Exclusion Principle. Moreover, two factors related to the wave function of the compressed system and ECSCP model are considered. The results reveal an intriguing relative ordering for the lithium atom using the three plasma models, with many of the findings being significant contributions yet to be explored.</p></div>\",\"PeriodicalId\":556,\"journal\":{\"name\":\"Few-Body Systems\",\"volume\":\"66 1\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-02-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00601-025-01981-1.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Few-Body Systems\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00601-025-01981-1\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Few-Body Systems","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s00601-025-01981-1","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

采用变分蒙特卡罗方法对等离子体嵌入锂原子的压缩基态和激发态进行了全面的研究。利用屏蔽库仑电位(SCP)、指数余弦屏蔽库仑电位(ECSCP)和hulthsamen电位等等离子体电位,研究了低空激发双重态1 \(s^{{2}}\) ns、1 \(s^{{2}}n\) p和1 \(s^{{2}}n\) d。能量特征值是用适当的试波函数确定的,它考虑了电子-电子排斥和自旋部分,以遵守泡利不相容原理。此外,还考虑了与压缩系统波函数和ECSCP模型相关的两个因素。使用三种等离子体模型,结果揭示了锂原子的一个有趣的相对顺序,许多发现是有待探索的重要贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Impacts of Compression on the Ground and Low-Lying Excited Doublet States of Plasma-Embedded Lithium Atom

The variational Monte Carlo method is employed to conduct a comprehensive investigation of the compressed ground and excited states of plasma-embedded lithium atom within impenetrable spherical boxes of varying radii. The study focuses on the low-lying excited doublet states 1\(s^{{2}}\)ns, 1\(s^{{2}}n\)p, and 1\(s^{{2}}n\)d, utilizing plasma potentials such as the screened Coulomb (SCP), exponential cosine screened Coulomb (ECSCP), and Hulthén potentials. Energy eigenvalues are determined using appropriate trial wave functions, which account for electron–electron repulsion and spin parts to adhere to the Pauli Exclusion Principle. Moreover, two factors related to the wave function of the compressed system and ECSCP model are considered. The results reveal an intriguing relative ordering for the lithium atom using the three plasma models, with many of the findings being significant contributions yet to be explored.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Few-Body Systems
Few-Body Systems 物理-物理:综合
CiteScore
2.90
自引率
18.80%
发文量
64
审稿时长
6-12 weeks
期刊介绍: The journal Few-Body Systems presents original research work – experimental, theoretical and computational – investigating the behavior of any classical or quantum system consisting of a small number of well-defined constituent structures. The focus is on the research methods, properties, and results characteristic of few-body systems. Examples of few-body systems range from few-quark states, light nuclear and hadronic systems; few-electron atomic systems and small molecules; and specific systems in condensed matter and surface physics (such as quantum dots and highly correlated trapped systems), up to and including large-scale celestial structures. Systems for which an equivalent one-body description is available or can be designed, and large systems for which specific many-body methods are needed are outside the scope of the journal. The journal is devoted to the publication of all aspects of few-body systems research and applications. While concentrating on few-body systems well-suited to rigorous solutions, the journal also encourages interdisciplinary contributions that foster common approaches and insights, introduce and benchmark the use of novel tools (e.g. machine learning) and develop relevant applications (e.g. few-body aspects in quantum technologies).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信