希尔伯特空间上多边型算子的共通族

IF 0.8 Q2 MATHEMATICS
Christian Le Merdy, M. N. Reshmi
{"title":"希尔伯特空间上多边型算子的共通族","authors":"Christian Le Merdy,&nbsp;M. N. Reshmi","doi":"10.1007/s43036-024-00407-9","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span>\\(T:H\\rightarrow H\\)</span> be a bounded operator on Hilbert space <i>H</i>. We say that <i>T</i> has a polygonal type if there exists an open convex polygon <span>\\(\\Delta \\subset {\\mathbb {D}}\\)</span>, with <span>\\(\\overline{\\Delta }\\cap {\\mathbb {T}}\\ne \\emptyset \\)</span>, such that the spectrum <span>\\(\\sigma (T)\\)</span> is included in <span>\\(\\overline{\\Delta }\\)</span> and the resolvent <i>R</i>(<i>z</i>, <i>T</i>) satisfies an estimate <span>\\(\\Vert R(z,T)\\Vert \\lesssim \\max \\{\\vert z-\\xi \\vert ^{-1}\\,:\\, \\xi \\in \\overline{\\Delta }\\cap {\\mathbb {T}}\\}\\)</span> for <span>\\(z\\in \\overline{\\mathbb {D}}^c\\)</span>. The class of polygonal type operators (which goes back to De Laubenfels and Franks–McIntosh) contains the class of Ritt operators. Let <span>\\(T_1,\\ldots ,T_d\\)</span> be commuting operators on <i>H</i>, with <span>\\(d\\ge 3\\)</span>. We prove functional calculus properties of the <i>d</i>-tuple <span>\\((T_1,\\ldots ,T_d)\\)</span> under various assumptions involving poygonal type. The main ones are the following. (1) If the operator <span>\\(T_k\\)</span> is a contraction for all <span>\\(k=1,\\ldots ,d\\)</span> and if <span>\\(T_1,\\ldots ,T_{d-2}\\)</span> have a polygonal type, then <span>\\((T_1,\\ldots ,T_d)\\)</span> satisfies a generalized von Neumann inequality <span>\\(\\Vert \\phi (T_1,\\ldots ,T_d)\\Vert \\le C\\Vert \\phi \\Vert _{\\infty ,{\\mathbb {D}}^d}\\)</span> for polynomials <span>\\(\\phi \\)</span> in <i>d</i> variables; (2) If <span>\\(T_k\\)</span> is polynomially bounded with a polygonal type for all <span>\\(k=1,\\ldots ,d\\)</span>, then there exists an invertible operator <span>\\(S:H\\rightarrow H\\)</span> such that <span>\\(\\Vert S^{-1}T_kS\\Vert \\le 1\\)</span> for all <span>\\(k=1,\\ldots ,d\\)</span>.</p></div>","PeriodicalId":44371,"journal":{"name":"Advances in Operator Theory","volume":"10 2","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Commuting families of polygonal type operators on Hilbert space\",\"authors\":\"Christian Le Merdy,&nbsp;M. N. Reshmi\",\"doi\":\"10.1007/s43036-024-00407-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <span>\\\\(T:H\\\\rightarrow H\\\\)</span> be a bounded operator on Hilbert space <i>H</i>. We say that <i>T</i> has a polygonal type if there exists an open convex polygon <span>\\\\(\\\\Delta \\\\subset {\\\\mathbb {D}}\\\\)</span>, with <span>\\\\(\\\\overline{\\\\Delta }\\\\cap {\\\\mathbb {T}}\\\\ne \\\\emptyset \\\\)</span>, such that the spectrum <span>\\\\(\\\\sigma (T)\\\\)</span> is included in <span>\\\\(\\\\overline{\\\\Delta }\\\\)</span> and the resolvent <i>R</i>(<i>z</i>, <i>T</i>) satisfies an estimate <span>\\\\(\\\\Vert R(z,T)\\\\Vert \\\\lesssim \\\\max \\\\{\\\\vert z-\\\\xi \\\\vert ^{-1}\\\\,:\\\\, \\\\xi \\\\in \\\\overline{\\\\Delta }\\\\cap {\\\\mathbb {T}}\\\\}\\\\)</span> for <span>\\\\(z\\\\in \\\\overline{\\\\mathbb {D}}^c\\\\)</span>. The class of polygonal type operators (which goes back to De Laubenfels and Franks–McIntosh) contains the class of Ritt operators. Let <span>\\\\(T_1,\\\\ldots ,T_d\\\\)</span> be commuting operators on <i>H</i>, with <span>\\\\(d\\\\ge 3\\\\)</span>. We prove functional calculus properties of the <i>d</i>-tuple <span>\\\\((T_1,\\\\ldots ,T_d)\\\\)</span> under various assumptions involving poygonal type. The main ones are the following. (1) If the operator <span>\\\\(T_k\\\\)</span> is a contraction for all <span>\\\\(k=1,\\\\ldots ,d\\\\)</span> and if <span>\\\\(T_1,\\\\ldots ,T_{d-2}\\\\)</span> have a polygonal type, then <span>\\\\((T_1,\\\\ldots ,T_d)\\\\)</span> satisfies a generalized von Neumann inequality <span>\\\\(\\\\Vert \\\\phi (T_1,\\\\ldots ,T_d)\\\\Vert \\\\le C\\\\Vert \\\\phi \\\\Vert _{\\\\infty ,{\\\\mathbb {D}}^d}\\\\)</span> for polynomials <span>\\\\(\\\\phi \\\\)</span> in <i>d</i> variables; (2) If <span>\\\\(T_k\\\\)</span> is polynomially bounded with a polygonal type for all <span>\\\\(k=1,\\\\ldots ,d\\\\)</span>, then there exists an invertible operator <span>\\\\(S:H\\\\rightarrow H\\\\)</span> such that <span>\\\\(\\\\Vert S^{-1}T_kS\\\\Vert \\\\le 1\\\\)</span> for all <span>\\\\(k=1,\\\\ldots ,d\\\\)</span>.</p></div>\",\"PeriodicalId\":44371,\"journal\":{\"name\":\"Advances in Operator Theory\",\"volume\":\"10 2\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-02-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Operator Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s43036-024-00407-9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Operator Theory","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s43036-024-00407-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。

Commuting families of polygonal type operators on Hilbert space

Commuting families of polygonal type operators on Hilbert space

Let \(T:H\rightarrow H\) be a bounded operator on Hilbert space H. We say that T has a polygonal type if there exists an open convex polygon \(\Delta \subset {\mathbb {D}}\), with \(\overline{\Delta }\cap {\mathbb {T}}\ne \emptyset \), such that the spectrum \(\sigma (T)\) is included in \(\overline{\Delta }\) and the resolvent R(zT) satisfies an estimate \(\Vert R(z,T)\Vert \lesssim \max \{\vert z-\xi \vert ^{-1}\,:\, \xi \in \overline{\Delta }\cap {\mathbb {T}}\}\) for \(z\in \overline{\mathbb {D}}^c\). The class of polygonal type operators (which goes back to De Laubenfels and Franks–McIntosh) contains the class of Ritt operators. Let \(T_1,\ldots ,T_d\) be commuting operators on H, with \(d\ge 3\). We prove functional calculus properties of the d-tuple \((T_1,\ldots ,T_d)\) under various assumptions involving poygonal type. The main ones are the following. (1) If the operator \(T_k\) is a contraction for all \(k=1,\ldots ,d\) and if \(T_1,\ldots ,T_{d-2}\) have a polygonal type, then \((T_1,\ldots ,T_d)\) satisfies a generalized von Neumann inequality \(\Vert \phi (T_1,\ldots ,T_d)\Vert \le C\Vert \phi \Vert _{\infty ,{\mathbb {D}}^d}\) for polynomials \(\phi \) in d variables; (2) If \(T_k\) is polynomially bounded with a polygonal type for all \(k=1,\ldots ,d\), then there exists an invertible operator \(S:H\rightarrow H\) such that \(\Vert S^{-1}T_kS\Vert \le 1\) for all \(k=1,\ldots ,d\).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
55
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信