{"title":"沥青/骨料的理化成分表征及界面粘附行为的多尺度分析","authors":"Guoqing Sun, Jiupeng Zhang, Zhenxing Niu, Yucheng Huang, Peixin Shi, Shuxian Zhang","doi":"10.1617/s11527-025-02592-2","DOIUrl":null,"url":null,"abstract":"<div><p>This paper comprehensively studies the interface characters and behaviors of asphalt-aggregate by laboratory tests and molecular dynamics (MD) simulations. To accurately build the molecular model of asphalt-aggregate interface system and explore the nano-scale adhesion mechanism, the physicochemical composition of SARA components (saturate, aromatic, resin, and asphaltene) is characterized by macro–micro tests including SARA components separation and elemental analyzer. The mineral composition of aggregate is analyzed by X-ray diffraction test. The adhesion work, diffusion behavior and relative distribution of SARA components on aggregate surface are analyzed based on MD simulations. The results show that the influence of aggregate type on adhesion work is higher than that of asphalt type. The interfacial adhesion strength law obtained by pull-off test is highly consistent with the simulation results. Diffusion behavior is related to the polarity and proportion of SARA components and mineral types. Polar components have strong adhesion to minerals and are concentrated near the surface of minerals, and they are easily adsorbed on the surfaces of alkaline minerals such as calcite and albite. The adsorption characteristics of mineral surface will be affected by the proportion of SARA components.</p></div>","PeriodicalId":691,"journal":{"name":"Materials and Structures","volume":"58 2","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characterization of physicochemical composition of asphalt/aggregate and multi-scale analysis of interfacial adhesion behavior\",\"authors\":\"Guoqing Sun, Jiupeng Zhang, Zhenxing Niu, Yucheng Huang, Peixin Shi, Shuxian Zhang\",\"doi\":\"10.1617/s11527-025-02592-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper comprehensively studies the interface characters and behaviors of asphalt-aggregate by laboratory tests and molecular dynamics (MD) simulations. To accurately build the molecular model of asphalt-aggregate interface system and explore the nano-scale adhesion mechanism, the physicochemical composition of SARA components (saturate, aromatic, resin, and asphaltene) is characterized by macro–micro tests including SARA components separation and elemental analyzer. The mineral composition of aggregate is analyzed by X-ray diffraction test. The adhesion work, diffusion behavior and relative distribution of SARA components on aggregate surface are analyzed based on MD simulations. The results show that the influence of aggregate type on adhesion work is higher than that of asphalt type. The interfacial adhesion strength law obtained by pull-off test is highly consistent with the simulation results. Diffusion behavior is related to the polarity and proportion of SARA components and mineral types. Polar components have strong adhesion to minerals and are concentrated near the surface of minerals, and they are easily adsorbed on the surfaces of alkaline minerals such as calcite and albite. The adsorption characteristics of mineral surface will be affected by the proportion of SARA components.</p></div>\",\"PeriodicalId\":691,\"journal\":{\"name\":\"Materials and Structures\",\"volume\":\"58 2\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-02-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials and Structures\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1617/s11527-025-02592-2\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials and Structures","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1617/s11527-025-02592-2","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
Characterization of physicochemical composition of asphalt/aggregate and multi-scale analysis of interfacial adhesion behavior
This paper comprehensively studies the interface characters and behaviors of asphalt-aggregate by laboratory tests and molecular dynamics (MD) simulations. To accurately build the molecular model of asphalt-aggregate interface system and explore the nano-scale adhesion mechanism, the physicochemical composition of SARA components (saturate, aromatic, resin, and asphaltene) is characterized by macro–micro tests including SARA components separation and elemental analyzer. The mineral composition of aggregate is analyzed by X-ray diffraction test. The adhesion work, diffusion behavior and relative distribution of SARA components on aggregate surface are analyzed based on MD simulations. The results show that the influence of aggregate type on adhesion work is higher than that of asphalt type. The interfacial adhesion strength law obtained by pull-off test is highly consistent with the simulation results. Diffusion behavior is related to the polarity and proportion of SARA components and mineral types. Polar components have strong adhesion to minerals and are concentrated near the surface of minerals, and they are easily adsorbed on the surfaces of alkaline minerals such as calcite and albite. The adsorption characteristics of mineral surface will be affected by the proportion of SARA components.
期刊介绍:
Materials and Structures, the flagship publication of the International Union of Laboratories and Experts in Construction Materials, Systems and Structures (RILEM), provides a unique international and interdisciplinary forum for new research findings on the performance of construction materials. A leader in cutting-edge research, the journal is dedicated to the publication of high quality papers examining the fundamental properties of building materials, their characterization and processing techniques, modeling, standardization of test methods, and the application of research results in building and civil engineering. Materials and Structures also publishes comprehensive reports prepared by the RILEM’s technical committees.