Benedikt Weber, Colin T. Davie, Alain Millard, Jiayi Wang, Dorjan Dauti, Yiming Zhang, Jean-Christophe Mindeguia, Matthias Zeiml, Stefano Dal Pont, Francesco Pesavento
{"title":"受热混凝土中的传热传质:五种数值模型的评价与验证","authors":"Benedikt Weber, Colin T. Davie, Alain Millard, Jiayi Wang, Dorjan Dauti, Yiming Zhang, Jean-Christophe Mindeguia, Matthias Zeiml, Stefano Dal Pont, Francesco Pesavento","doi":"10.1617/s11527-024-02532-6","DOIUrl":null,"url":null,"abstract":"<div><p>Modeling concrete at elevated temperatures is essential to understanding the behavior of structural elements during fire, particularly with respect to spalling. To accurately predict temperatures and pore pressures, models must be validated against experimental data. However, most models in the literature focus on replicating experimental outcomes and often rely on input parameters sourced from the literature or determined by empirical tuning. To explore this further, a study of five models was conducted as part of the activities of the RILEM Technical Committee 256-SPF. On the theoretical side, state-of-the-art formulations are reviewed and similarities and differences between implementations are discussed. Using input parameters from various test reports, simulations of temperatures and pore pressures were performed and compared with test results for two types of concrete. While all of the models gave satisfactory results, they did so only when permeability values were applied that were significantly lower than those obtained from the standard tests. Since this trend was consistent across all models, it suggests that the permeability of concrete under heating conditions differs from that measured in standard material tests. As noted by some researchers, gas permeability in concrete is altered by the presence of water, probably due to swelling and rehydration. Identifying an accurate permeability value for these conditions remains an open research challenge.</p></div>","PeriodicalId":691,"journal":{"name":"Materials and Structures","volume":"58 2","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Heat and mass transfer in heated concrete: evaluation and validation of five numerical models\",\"authors\":\"Benedikt Weber, Colin T. Davie, Alain Millard, Jiayi Wang, Dorjan Dauti, Yiming Zhang, Jean-Christophe Mindeguia, Matthias Zeiml, Stefano Dal Pont, Francesco Pesavento\",\"doi\":\"10.1617/s11527-024-02532-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Modeling concrete at elevated temperatures is essential to understanding the behavior of structural elements during fire, particularly with respect to spalling. To accurately predict temperatures and pore pressures, models must be validated against experimental data. However, most models in the literature focus on replicating experimental outcomes and often rely on input parameters sourced from the literature or determined by empirical tuning. To explore this further, a study of five models was conducted as part of the activities of the RILEM Technical Committee 256-SPF. On the theoretical side, state-of-the-art formulations are reviewed and similarities and differences between implementations are discussed. Using input parameters from various test reports, simulations of temperatures and pore pressures were performed and compared with test results for two types of concrete. While all of the models gave satisfactory results, they did so only when permeability values were applied that were significantly lower than those obtained from the standard tests. Since this trend was consistent across all models, it suggests that the permeability of concrete under heating conditions differs from that measured in standard material tests. As noted by some researchers, gas permeability in concrete is altered by the presence of water, probably due to swelling and rehydration. Identifying an accurate permeability value for these conditions remains an open research challenge.</p></div>\",\"PeriodicalId\":691,\"journal\":{\"name\":\"Materials and Structures\",\"volume\":\"58 2\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-02-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials and Structures\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1617/s11527-024-02532-6\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials and Structures","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1617/s11527-024-02532-6","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
Heat and mass transfer in heated concrete: evaluation and validation of five numerical models
Modeling concrete at elevated temperatures is essential to understanding the behavior of structural elements during fire, particularly with respect to spalling. To accurately predict temperatures and pore pressures, models must be validated against experimental data. However, most models in the literature focus on replicating experimental outcomes and often rely on input parameters sourced from the literature or determined by empirical tuning. To explore this further, a study of five models was conducted as part of the activities of the RILEM Technical Committee 256-SPF. On the theoretical side, state-of-the-art formulations are reviewed and similarities and differences between implementations are discussed. Using input parameters from various test reports, simulations of temperatures and pore pressures were performed and compared with test results for two types of concrete. While all of the models gave satisfactory results, they did so only when permeability values were applied that were significantly lower than those obtained from the standard tests. Since this trend was consistent across all models, it suggests that the permeability of concrete under heating conditions differs from that measured in standard material tests. As noted by some researchers, gas permeability in concrete is altered by the presence of water, probably due to swelling and rehydration. Identifying an accurate permeability value for these conditions remains an open research challenge.
期刊介绍:
Materials and Structures, the flagship publication of the International Union of Laboratories and Experts in Construction Materials, Systems and Structures (RILEM), provides a unique international and interdisciplinary forum for new research findings on the performance of construction materials. A leader in cutting-edge research, the journal is dedicated to the publication of high quality papers examining the fundamental properties of building materials, their characterization and processing techniques, modeling, standardization of test methods, and the application of research results in building and civil engineering. Materials and Structures also publishes comprehensive reports prepared by the RILEM’s technical committees.