纳米硒涂层棉织物的疏水、机械和抗菌性能

IF 3.674 4区 工程技术 Q1 Engineering
D. Bharath, R. Vanathi Vijayalakshmi, P. Praveen Kumar, R. B. Prasanna
{"title":"纳米硒涂层棉织物的疏水、机械和抗菌性能","authors":"D. Bharath,&nbsp;R. Vanathi Vijayalakshmi,&nbsp;P. Praveen Kumar,&nbsp;R. B. Prasanna","doi":"10.1007/s13204-025-03081-2","DOIUrl":null,"url":null,"abstract":"<div><p>In recent years, the advancement of nanotechnology has created a great impact on the textile industry. Adhering to nanoscale levels, fabric surfaces have a wide variety of uses including ultraviolet (UV) protection, antibacterial resistance, wrinkle resistance, and flame retardance. In this work, selenium nanoparticles were synthesized and coated over three distinct cotton-woven fabrics (i.e.) organic, poplin, and muslin cotton fabrics. The respective coated fabrics were examined using X-ray diffraction analysis (XRD) which exhibits high crystallinity with an average size of 11 nm. The existence of cellulose peak has been confirmed from FTIR analysis. SEM images illustrate that the selenium nanoparticles have been coated on the respective fabrics. According to measurements of water contact angle, cotton fabric from muslin exhibits higher levels of hydrophobicity than other types. Colorfastness study has revealed that poplin cotton discloses higher color strength than others. Washing durability and tensile properties of the coated fabric has also been examined. The results of the antibacterial test showed that the presence of selenium nanoparticles significantly enhanced the antibacterial performance against three different bacterial strains, including <i>Pseudomonas aeruginosa</i>, <i>Staphylococcus aureus</i>, <i>Escherichia coli</i> using the disk diffusion method and its Zone of Inhibition (ZOI) were measured. Out of the three fabrics, poplin cotton has superior antibacterial properties.</p></div>","PeriodicalId":471,"journal":{"name":"Applied Nanoscience","volume":"15 1","pages":""},"PeriodicalIF":3.6740,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hydrophobic, mechanical and anti-bacterial properties of selenium nanoparticles coated cotton fabrics\",\"authors\":\"D. Bharath,&nbsp;R. Vanathi Vijayalakshmi,&nbsp;P. Praveen Kumar,&nbsp;R. B. Prasanna\",\"doi\":\"10.1007/s13204-025-03081-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In recent years, the advancement of nanotechnology has created a great impact on the textile industry. Adhering to nanoscale levels, fabric surfaces have a wide variety of uses including ultraviolet (UV) protection, antibacterial resistance, wrinkle resistance, and flame retardance. In this work, selenium nanoparticles were synthesized and coated over three distinct cotton-woven fabrics (i.e.) organic, poplin, and muslin cotton fabrics. The respective coated fabrics were examined using X-ray diffraction analysis (XRD) which exhibits high crystallinity with an average size of 11 nm. The existence of cellulose peak has been confirmed from FTIR analysis. SEM images illustrate that the selenium nanoparticles have been coated on the respective fabrics. According to measurements of water contact angle, cotton fabric from muslin exhibits higher levels of hydrophobicity than other types. Colorfastness study has revealed that poplin cotton discloses higher color strength than others. Washing durability and tensile properties of the coated fabric has also been examined. The results of the antibacterial test showed that the presence of selenium nanoparticles significantly enhanced the antibacterial performance against three different bacterial strains, including <i>Pseudomonas aeruginosa</i>, <i>Staphylococcus aureus</i>, <i>Escherichia coli</i> using the disk diffusion method and its Zone of Inhibition (ZOI) were measured. Out of the three fabrics, poplin cotton has superior antibacterial properties.</p></div>\",\"PeriodicalId\":471,\"journal\":{\"name\":\"Applied Nanoscience\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":3.6740,\"publicationDate\":\"2025-02-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Nanoscience\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s13204-025-03081-2\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Nanoscience","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s13204-025-03081-2","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

近年来,纳米技术的进步对纺织工业产生了巨大的影响。坚持纳米级水平,织物表面有各种各样的用途,包括紫外线(UV)保护,抗菌,抗皱和阻燃。在这项工作中,硒纳米粒子被合成并涂覆在三种不同的棉织物上(即有机、府绸和平纹棉织物)。采用x射线衍射分析(XRD)对涂层织物进行了表征,结果表明涂层织物的结晶度较高,平均尺寸为11 nm。FTIR分析证实纤维素峰的存在。扫描电镜图像表明,硒纳米颗粒已被涂覆在各自的织物上。根据水接触角的测量,棉布比细布表现出更高的疏水性。色牢度研究表明,府绸棉比其他棉具有更高的色牢度。对涂层织物的洗涤耐久性和拉伸性能也进行了测试。抑菌实验结果表明,纳米硒的存在显著增强了其对铜绿假单胞菌、金黄色葡萄球菌、大肠杆菌等3种不同菌株的抑菌性能,并测定了其抑菌带(ZOI)。在这三种织物中,府绸棉具有较好的抗菌性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hydrophobic, mechanical and anti-bacterial properties of selenium nanoparticles coated cotton fabrics

In recent years, the advancement of nanotechnology has created a great impact on the textile industry. Adhering to nanoscale levels, fabric surfaces have a wide variety of uses including ultraviolet (UV) protection, antibacterial resistance, wrinkle resistance, and flame retardance. In this work, selenium nanoparticles were synthesized and coated over three distinct cotton-woven fabrics (i.e.) organic, poplin, and muslin cotton fabrics. The respective coated fabrics were examined using X-ray diffraction analysis (XRD) which exhibits high crystallinity with an average size of 11 nm. The existence of cellulose peak has been confirmed from FTIR analysis. SEM images illustrate that the selenium nanoparticles have been coated on the respective fabrics. According to measurements of water contact angle, cotton fabric from muslin exhibits higher levels of hydrophobicity than other types. Colorfastness study has revealed that poplin cotton discloses higher color strength than others. Washing durability and tensile properties of the coated fabric has also been examined. The results of the antibacterial test showed that the presence of selenium nanoparticles significantly enhanced the antibacterial performance against three different bacterial strains, including Pseudomonas aeruginosa, Staphylococcus aureus, Escherichia coli using the disk diffusion method and its Zone of Inhibition (ZOI) were measured. Out of the three fabrics, poplin cotton has superior antibacterial properties.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Nanoscience
Applied Nanoscience Materials Science-Materials Science (miscellaneous)
CiteScore
7.10
自引率
0.00%
发文量
430
期刊介绍: Applied Nanoscience is a hybrid journal that publishes original articles about state of the art nanoscience and the application of emerging nanotechnologies to areas fundamental to building technologically advanced and sustainable civilization, including areas as diverse as water science, advanced materials, energy, electronics, environmental science and medicine. The journal accepts original and review articles as well as book reviews for publication. All the manuscripts are single-blind peer-reviewed for scientific quality and acceptance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信