用异常正交多项式及其超对称伙伴求解新势

IF 1.3 4区 物理与天体物理 Q3 PHYSICS, MULTIDISCIPLINARY
Satish Yadav, Rahul Ghosh, Bhabani Prasad Mandal
{"title":"用异常正交多项式及其超对称伙伴求解新势","authors":"Satish Yadav,&nbsp;Rahul Ghosh,&nbsp;Bhabani Prasad Mandal","doi":"10.1007/s10773-024-05854-x","DOIUrl":null,"url":null,"abstract":"<div><p>Point canonical transformation has been used to find out new exactly solvable potentials in the position-dependent mass framework. We solve 1-D Schrödinger equation in this framework by considering two different fairly generic position-dependent masses <span>\\((i) M(x)=\\lambda g'(x)\\)</span> and <span>\\((ii) M(x) = c \\left( {g'(x)} \\right) ^\\nu \\)</span>, <span>\\(\\nu =\\frac{2\\eta }{2\\eta +1},\\)</span> with <span>\\(\\eta = 0,1,2\\cdots \\)</span>. In the first case, we find new exactly solvable potentials that depend on an integer parameter <i>m</i>, and the corresponding solutions are written in terms of <span>\\(X_m\\)</span>-Laguerre polynomials. In the latter case, we obtain a new one parameter <span>\\((\\nu )\\)</span> family of isochronous solvable potentials whose bound states are written in terms of <span>\\(X_m\\)</span>-Laguerre polynomials. Further, we show that the new potentials are shape invariant by using the supersymmetric approach in the framework of position-dependent mass.</p></div>","PeriodicalId":597,"journal":{"name":"International Journal of Theoretical Physics","volume":"64 2","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Solving New Potentials in Terms of Exceptional Orthogonal Polynomials and Their Supersymmetric Partners\",\"authors\":\"Satish Yadav,&nbsp;Rahul Ghosh,&nbsp;Bhabani Prasad Mandal\",\"doi\":\"10.1007/s10773-024-05854-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Point canonical transformation has been used to find out new exactly solvable potentials in the position-dependent mass framework. We solve 1-D Schrödinger equation in this framework by considering two different fairly generic position-dependent masses <span>\\\\((i) M(x)=\\\\lambda g'(x)\\\\)</span> and <span>\\\\((ii) M(x) = c \\\\left( {g'(x)} \\\\right) ^\\\\nu \\\\)</span>, <span>\\\\(\\\\nu =\\\\frac{2\\\\eta }{2\\\\eta +1},\\\\)</span> with <span>\\\\(\\\\eta = 0,1,2\\\\cdots \\\\)</span>. In the first case, we find new exactly solvable potentials that depend on an integer parameter <i>m</i>, and the corresponding solutions are written in terms of <span>\\\\(X_m\\\\)</span>-Laguerre polynomials. In the latter case, we obtain a new one parameter <span>\\\\((\\\\nu )\\\\)</span> family of isochronous solvable potentials whose bound states are written in terms of <span>\\\\(X_m\\\\)</span>-Laguerre polynomials. Further, we show that the new potentials are shape invariant by using the supersymmetric approach in the framework of position-dependent mass.</p></div>\",\"PeriodicalId\":597,\"journal\":{\"name\":\"International Journal of Theoretical Physics\",\"volume\":\"64 2\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2025-02-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Theoretical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10773-024-05854-x\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Theoretical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10773-024-05854-x","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

利用点正则变换在位置相关质量体系中寻找新的精确可解势。我们通过考虑两个不同的相当一般的位置相关质量\((i) M(x)=\lambda g'(x)\)和\((ii) M(x) = c \left( {g'(x)} \right) ^\nu \), \(\nu =\frac{2\eta }{2\eta +1},\)和\(\eta = 0,1,2\cdots \),在这个框架中求解1-D Schrödinger方程。在第一种情况下,我们找到了依赖于整数参数m的新的精确可解势,相应的解用\(X_m\) -Laguerre多项式表示。在后一种情况下,我们得到了一个新的单参数\((\nu )\)等时可解势族,其约束态用\(X_m\) -Laguerre多项式表示。进一步,我们利用超对称方法在位置依赖质量的框架下证明了新势是形状不变的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Solving New Potentials in Terms of Exceptional Orthogonal Polynomials and Their Supersymmetric Partners

Point canonical transformation has been used to find out new exactly solvable potentials in the position-dependent mass framework. We solve 1-D Schrödinger equation in this framework by considering two different fairly generic position-dependent masses \((i) M(x)=\lambda g'(x)\) and \((ii) M(x) = c \left( {g'(x)} \right) ^\nu \), \(\nu =\frac{2\eta }{2\eta +1},\) with \(\eta = 0,1,2\cdots \). In the first case, we find new exactly solvable potentials that depend on an integer parameter m, and the corresponding solutions are written in terms of \(X_m\)-Laguerre polynomials. In the latter case, we obtain a new one parameter \((\nu )\) family of isochronous solvable potentials whose bound states are written in terms of \(X_m\)-Laguerre polynomials. Further, we show that the new potentials are shape invariant by using the supersymmetric approach in the framework of position-dependent mass.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.50
自引率
21.40%
发文量
258
审稿时长
3.3 months
期刊介绍: International Journal of Theoretical Physics publishes original research and reviews in theoretical physics and neighboring fields. Dedicated to the unification of the latest physics research, this journal seeks to map the direction of future research by original work in traditional physics like general relativity, quantum theory with relativistic quantum field theory,as used in particle physics, and by fresh inquiry into quantum measurement theory, and other similarly fundamental areas, e.g. quantum geometry and quantum logic, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信