负矩作为小距离径向密度的特征

IF 2.6 3区 物理与天体物理 Q2 PHYSICS, NUCLEAR
M. Atoui, M. Hoballah, M. Lassaut, J. Van de Wiele
{"title":"负矩作为小距离径向密度的特征","authors":"M. Atoui,&nbsp;M. Hoballah,&nbsp;M. Lassaut,&nbsp;J. Van de Wiele","doi":"10.1140/epja/s10050-025-01496-7","DOIUrl":null,"url":null,"abstract":"<div><p>The present paper proposes a robust evaluation of any radial density at small distances using negative-order radial moments evaluated in momentum space. This evaluation provides a valuable insight into the behavior of a given radial density in the vicinity of <span>\\(r=0\\)</span>, and puts strong emphasis on the importance of measuring form factors at large squared four-momentum transfer, a domain essential for the determination of negative order moments. A specific attention is paid to the regularization scheme directly affecting the numerical determination of the radial density’s parametrization. The proposed method is applied to non-relativistic study cases of the nucleon electric (<span>\\(G_{En}, G_{Ep}\\)</span>), and proton magnetic <span>\\(G_{Mp}\\)</span> form factors. The validation is performed through comparison of the results of the approach to the analytically determined Maclaurin expansion - in the vicinity of <span>\\(r=0\\)</span> - of the radial density function. The method is also applied to the relativistic Dirac form factor <span>\\({{F_{1p}}}\\)</span> of the proton. In such a non-trivial case, the Maclaurin development might not exist for the radial density, rendering the determination from the proposed method extremely important.</p></div>","PeriodicalId":786,"journal":{"name":"The European Physical Journal A","volume":"61 2","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1140/epja/s10050-025-01496-7.pdf","citationCount":"0","resultStr":"{\"title\":\"Negative moments as the signature of the radial density at small distances\",\"authors\":\"M. Atoui,&nbsp;M. Hoballah,&nbsp;M. Lassaut,&nbsp;J. Van de Wiele\",\"doi\":\"10.1140/epja/s10050-025-01496-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The present paper proposes a robust evaluation of any radial density at small distances using negative-order radial moments evaluated in momentum space. This evaluation provides a valuable insight into the behavior of a given radial density in the vicinity of <span>\\\\(r=0\\\\)</span>, and puts strong emphasis on the importance of measuring form factors at large squared four-momentum transfer, a domain essential for the determination of negative order moments. A specific attention is paid to the regularization scheme directly affecting the numerical determination of the radial density’s parametrization. The proposed method is applied to non-relativistic study cases of the nucleon electric (<span>\\\\(G_{En}, G_{Ep}\\\\)</span>), and proton magnetic <span>\\\\(G_{Mp}\\\\)</span> form factors. The validation is performed through comparison of the results of the approach to the analytically determined Maclaurin expansion - in the vicinity of <span>\\\\(r=0\\\\)</span> - of the radial density function. The method is also applied to the relativistic Dirac form factor <span>\\\\({{F_{1p}}}\\\\)</span> of the proton. In such a non-trivial case, the Maclaurin development might not exist for the radial density, rendering the determination from the proposed method extremely important.</p></div>\",\"PeriodicalId\":786,\"journal\":{\"name\":\"The European Physical Journal A\",\"volume\":\"61 2\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-02-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1140/epja/s10050-025-01496-7.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The European Physical Journal A\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1140/epja/s10050-025-01496-7\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal A","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epja/s10050-025-01496-7","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, NUCLEAR","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种在动量空间中利用负阶径向矩计算小距离上任意径向密度的鲁棒方法。这个评估提供了一个有价值的洞察到一个给定的径向密度在\(r=0\)附近的行为,并强调了在大平方四动量传递测量形状因素的重要性,这是确定负阶矩必不可少的领域。特别注意了直接影响径向密度参数化数值确定的正则化方案。该方法适用于核子电(\(G_{En}, G_{Ep}\))和质子磁(\(G_{Mp}\))形态因子的非相对论性研究。验证是通过对径向密度函数\(r=0\)附近解析确定的麦克劳林展开的方法的结果进行比较来进行的。该方法也适用于质子的相对论狄拉克形状因子\({{F_{1p}}}\)。在这种非平凡的情况下,麦克劳林发展可能不存在径向密度,使得从所提出的方法确定极为重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Negative moments as the signature of the radial density at small distances

The present paper proposes a robust evaluation of any radial density at small distances using negative-order radial moments evaluated in momentum space. This evaluation provides a valuable insight into the behavior of a given radial density in the vicinity of \(r=0\), and puts strong emphasis on the importance of measuring form factors at large squared four-momentum transfer, a domain essential for the determination of negative order moments. A specific attention is paid to the regularization scheme directly affecting the numerical determination of the radial density’s parametrization. The proposed method is applied to non-relativistic study cases of the nucleon electric (\(G_{En}, G_{Ep}\)), and proton magnetic \(G_{Mp}\) form factors. The validation is performed through comparison of the results of the approach to the analytically determined Maclaurin expansion - in the vicinity of \(r=0\) - of the radial density function. The method is also applied to the relativistic Dirac form factor \({{F_{1p}}}\) of the proton. In such a non-trivial case, the Maclaurin development might not exist for the radial density, rendering the determination from the proposed method extremely important.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
The European Physical Journal A
The European Physical Journal A 物理-物理:核物理
CiteScore
5.00
自引率
18.50%
发文量
216
审稿时长
3-8 weeks
期刊介绍: Hadron Physics Hadron Structure Hadron Spectroscopy Hadronic and Electroweak Interactions of Hadrons Nonperturbative Approaches to QCD Phenomenological Approaches to Hadron Physics Nuclear and Quark Matter Heavy-Ion Collisions Phase Diagram of the Strong Interaction Hard Probes Quark-Gluon Plasma and Hadronic Matter Relativistic Transport and Hydrodynamics Compact Stars Nuclear Physics Nuclear Structure and Reactions Few-Body Systems Radioactive Beams Electroweak Interactions Nuclear Astrophysics Article Categories Letters (Open Access) Regular Articles New Tools and Techniques Reviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信